Abstract
In this paper we study finite higher-dimensional automata (HDAs) from the logical point of view. Languages of HDAs are sets of finite bounded-width interval pomsets with interfaces (\({\textsf {iiPoms} }_{\le k}\)) closed under order extension. We prove that languages of HDAs are MSO-definable. For the converse, we show that the order extensions of MSO-definable sets of \({\textsf {iiPoms} }_{\le k}\) are languages of HDAs. Furthermore, both constructions are effective. As a consequence, unlike the case of all pomsets, the order extension of any MSO-definable set of \({\textsf {iiPoms} }_{\le k}\) is MSO-definable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
A strict partial order is a relation which is irreflexive, asymmetric and transitive. We will omit the qualifier “strict”.
References
Amrane, A., Bazille, H., Clement, E., Fahrenberg, U.: Languages of higher-dimensional timed automata. In: PETRI NETS, 2024 (2024). Accepted. https://arxiv.org/abs/2401.17444
Amrane, A., Bazille, H., Fahrenberg, U., Ziemiański, K.: Closure and decision properties for higher-dimensional automata. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds.) Theoretical Aspects of Computing – ICTAC 2023. ICTAC 2023. LNCS, vol. 14446, pp. 295–312. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47963-2_18
Bedon, N.: Logic and branching automata. Log. Methods Comput. Sci. 11(4) (2015)
Brown, R., Higgins, P.J.: On the algebra of cubes. J. Pure Appl. Alg. 21, 233–260 (1981)
Richard Büchi, J.: Weak second order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)
Richard Büchi, J.: On a decision method in restricted second order arithmetic. In: Nagel, E., Suppes, P., Tarski, A. (eds.), LMPS’60, pp. 1–11. Stanford University Press (1962)
Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)
Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4(5), 406–451 (1970)
Dubut, J., Goubault, É., Goubault-Larrecq, J.: Natural homology. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 171–183. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_14
Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–52 (1961)
Fahrenberg, U.: A category of higher-dimensional automata. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 187–201. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5_12
Fahrenberg, U.: Higher-dimensional timed and hybrid automata. Leibniz Trans. Embed. Syst. 8(2), 03:1–03:16 (2022)
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Languages of higher-dimensional automata. Math. Struct. Comput. Sci. 31(5), 575–613 (2021)
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for higher-dimensional automata. In: Klin, B., Lasota, S., Muscholl, A. (eds.), CONCUR, volume 243 of Leibniz International Proceedings in Informatics, pp. 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)
Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model for concurrency. Inf. Comput. 285(B), 104914 (2022)
Fahrenberg, U., Raussen, M.: Reparametrizations of continuous paths. J. Homotopy Relat. Struct. 2(2), 93–117 (2007)
Fahrenberg, U., Ziemiański, K.: A myhill-nerode theorem for higher-dimensional automata. In: Gomes, L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2023. LNCS, vol. 13929, pp. 167–188. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33620-1_9
Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., Raussen, M.: Trace spaces: an efficient new technique for state-space reduction. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 274–294. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_14
Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Directed Algebraic Topology and Concurrency. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-15398-8
Fajstrup, L., Raussen, M., Goubault, E., Haucourt, E.: Components of the fundamental category. Appl. Categ. Struct. 12, 81–108 (2004)
Fanchon, J., Morin, R.: Pomset languages of finite step transition systems. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 83–102. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5_7
Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley, Hoboken (1985)
Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for existentially bounded communicating automata. Inf. Comput. 204(6), 920–956 (2006)
Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427 (1981)
Grandis, M., Mauri, L.: Cubical sets and their site. Theory Appl. Categ. 11(8), 185–211 (2003)
Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of antichains. Fundam. Inform. 169(1–2), 31–55 (2019)
Kahl, T.: Topological abstraction of higher-dimensional automata. Theor. Comput. Sci. 631, 97–117 (2016)
Kahl, T.: Weak equivalence of higher-dimensional automata. Discret. Math. Theor. Comput. Sci. 23(1) (2021)
Kuske, D.: Infinite series-parallel posets: logic and languages. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 648–662. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X_55
Kuske, D., Morin, R.: Pomsets for local trace languages. J. Autom. Lang. Comb. 7(2), 187–224 (2002)
Pratt, V.R.: Modeling concurrency with geometry. In: POPL, pp. 311–322. ACM Press, New York City (1991)
Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)
Serre, J.-P.: Homologie singulière des espaces fibrés. PhD thesis, Ecole Normale Supérieure, Paris, France (1951)
Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)
Thomas, W.: On logical definability of trace languages. In: Algebraic and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002, Technical University of Munich, pp. 172–182 (1990)
Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7
Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Sib. Math. J. 3, 103–131 (1962). In Russian; English translation in Amer. Math. Soc. Transl. 59(1966), 23–55
van Glabbeek, R.J.: Bisimulations for higher dimensional automata. Email message, June 1991. http://theory.stanford.edu/~rvg/hda
Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17, 441–449 (1914)
Zielonka, W.: Notes on finite asynchronous automata. RAIRO - Informatique Théorique et Applications 21(2), 99–135 (1987)
Ziemiański, K.: Stable components of directed spaces. Appl. Categ. Struct. 27(3), 217–244 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Amrane, A., Bazille, H., Fahrenberg, U., Fortin, M. (2024). Logic and Languages of Higher-Dimensional Automata. In: Day, J.D., Manea, F. (eds) Developments in Language Theory. DLT 2024. Lecture Notes in Computer Science, vol 14791. Springer, Cham. https://doi.org/10.1007/978-3-031-66159-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-66159-4_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66158-7
Online ISBN: 978-3-031-66159-4
eBook Packages: Computer ScienceComputer Science (R0)