Skip to main content

Logic and Languages of Higher-Dimensional Automata

  • Conference paper
  • First Online:
Developments in Language Theory (DLT 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14791))

Included in the following conference series:

Abstract

In this paper we study finite higher-dimensional automata (HDAs) from the logical point of view. Languages of HDAs are sets of finite bounded-width interval pomsets with interfaces (\({\textsf {iiPoms} }_{\le k}\)) closed under order extension. We prove that languages of HDAs are MSO-definable. For the converse, we show that the order extensions of MSO-definable sets of \({\textsf {iiPoms} }_{\le k}\) are languages of HDAs. Furthermore, both constructions are effective. As a consequence, unlike the case of all pomsets, the order extension of any MSO-definable set of \({\textsf {iiPoms} }_{\le k}\) is MSO-definable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    A strict partial order is a relation which is irreflexive, asymmetric and transitive. We will omit the qualifier “strict”.

References

  1. Amrane, A., Bazille, H., Clement, E., Fahrenberg, U.: Languages of higher-dimensional timed automata. In: PETRI NETS, 2024 (2024). Accepted. https://arxiv.org/abs/2401.17444

  2. Amrane, A., Bazille, H., Fahrenberg, U., Ziemiański, K.: Closure and decision properties for higher-dimensional automata. In: Ábrahám, E., Dubslaff, C., Tarifa, S.L.T. (eds.) Theoretical Aspects of Computing – ICTAC 2023. ICTAC 2023. LNCS, vol. 14446, pp. 295–312. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-47963-2_18

  3. Bedon, N.: Logic and branching automata. Log. Methods Comput. Sci. 11(4) (2015)

    Google Scholar 

  4. Brown, R., Higgins, P.J.: On the algebra of cubes. J. Pure Appl. Alg. 21, 233–260 (1981)

    Article  MathSciNet  Google Scholar 

  5. Richard Büchi, J.: Weak second order arithmetic and finite automata. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 6, 66–92 (1960)

    Google Scholar 

  6. Richard Büchi, J.: On a decision method in restricted second order arithmetic. In: Nagel, E., Suppes, P., Tarski, A. (eds.), LMPS’60, pp. 1–11. Stanford University Press (1962)

    Google Scholar 

  7. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)

    Google Scholar 

  8. Doner, J.: Tree acceptors and some of their applications. J. Comput. Syst. Sci. 4(5), 406–451 (1970)

    Article  MathSciNet  Google Scholar 

  9. Dubut, J., Goubault, É., Goubault-Larrecq, J.: Natural homology. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP 2015. LNCS, vol. 9135, pp. 171–183. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47666-6_14

    Chapter  Google Scholar 

  10. Elgot, C.C.: Decision problems of finite automata design and related arithmetics. Trans. Am. Math. Soc. 98, 21–52 (1961)

    Article  MathSciNet  Google Scholar 

  11. Fahrenberg, U.: A category of higher-dimensional automata. In: Sassone, V. (ed.) FoSSaCS 2005. LNCS, vol. 3441, pp. 187–201. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31982-5_12

    Chapter  Google Scholar 

  12. Fahrenberg, U.: Higher-dimensional timed and hybrid automata. Leibniz Trans. Embed. Syst. 8(2), 03:1–03:16 (2022)

    Google Scholar 

  13. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Languages of higher-dimensional automata. Math. Struct. Comput. Sci. 31(5), 575–613 (2021)

    Article  MathSciNet  Google Scholar 

  14. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: A Kleene theorem for higher-dimensional automata. In: Klin, B., Lasota, S., Muscholl, A. (eds.), CONCUR, volume 243 of Leibniz International Proceedings in Informatics, pp. 29:1–29:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  15. Fahrenberg, U., Johansen, C., Struth, G., Ziemiański, K.: Posets with interfaces as a model for concurrency. Inf. Comput. 285(B), 104914 (2022)

    Google Scholar 

  16. Fahrenberg, U., Raussen, M.: Reparametrizations of continuous paths. J. Homotopy Relat. Struct. 2(2), 93–117 (2007)

    MathSciNet  Google Scholar 

  17. Fahrenberg, U., Ziemiański, K.: A myhill-nerode theorem for higher-dimensional automata. In: Gomes, L., Lorenz, R. (eds.) Application and Theory of Petri Nets and Concurrency. PETRI NETS 2023. LNCS, vol. 13929, pp. 167–188. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-33620-1_9

  18. Fajstrup, L., Goubault, É., Haucourt, E., Mimram, S., Raussen, M.: Trace spaces: an efficient new technique for state-space reduction. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 274–294. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28869-2_14

    Chapter  Google Scholar 

  19. Fajstrup, L., Goubault, E., Haucourt, E., Mimram, S., Raussen, M.: Directed Algebraic Topology and Concurrency. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-15398-8

    Book  Google Scholar 

  20. Fajstrup, L., Raussen, M., Goubault, E., Haucourt, E.: Components of the fundamental category. Appl. Categ. Struct. 12, 81–108 (2004)

    Article  MathSciNet  Google Scholar 

  21. Fanchon, J., Morin, R.: Pomset languages of finite step transition systems. In: Franceschinis, G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 83–102. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5_7

    Chapter  Google Scholar 

  22. Fishburn, P.C.: Interval Orders and Interval Graphs: A Study of Partially Ordered Sets. Wiley, Hoboken (1985)

    Google Scholar 

  23. Genest, B., Kuske, D., Muscholl, A.: A Kleene theorem and model checking algorithms for existentially bounded communicating automata. Inf. Comput. 204(6), 920–956 (2006)

    Article  MathSciNet  Google Scholar 

  24. Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427 (1981)

    Article  MathSciNet  Google Scholar 

  25. Grandis, M., Mauri, L.: Cubical sets and their site. Theory Appl. Categ. 11(8), 185–211 (2003)

    MathSciNet  Google Scholar 

  26. Janicki, R., Koutny, M.: Operational semantics, interval orders and sequences of antichains. Fundam. Inform. 169(1–2), 31–55 (2019)

    Article  MathSciNet  Google Scholar 

  27. Kahl, T.: Topological abstraction of higher-dimensional automata. Theor. Comput. Sci. 631, 97–117 (2016)

    Article  MathSciNet  Google Scholar 

  28. Kahl, T.: Weak equivalence of higher-dimensional automata. Discret. Math. Theor. Comput. Sci. 23(1) (2021)

    Google Scholar 

  29. Kuske, D.: Infinite series-parallel posets: logic and languages. In: Montanari, U., Rolim, J.D.P., Welzl, E. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 648–662. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45022-X_55

    Chapter  Google Scholar 

  30. Kuske, D., Morin, R.: Pomsets for local trace languages. J. Autom. Lang. Comb. 7(2), 187–224 (2002)

    MathSciNet  Google Scholar 

  31. Pratt, V.R.: Modeling concurrency with geometry. In: POPL, pp. 311–322. ACM Press, New York City (1991)

    Google Scholar 

  32. Rabin, M.O.: Decidability of second-order theories and automata on infinite trees. Trans. Am. Math. Soc. 141, 1–35 (1969)

    MathSciNet  Google Scholar 

  33. Serre, J.-P.: Homologie singulière des espaces fibrés. PhD thesis, Ecole Normale Supérieure, Paris, France (1951)

    Google Scholar 

  34. Thatcher, J.W., Wright, J.B.: Generalized finite automata theory with an application to a decision problem of second-order logic. Math. Syst. Theory 2(1), 57–81 (1968)

    Article  MathSciNet  Google Scholar 

  35. Thomas, W.: On logical definability of trace languages. In: Algebraic and Syntactic Methods in Computer Science (ASMICS), Report TUM-I9002, Technical University of Munich, pp. 172–182 (1990)

    Google Scholar 

  36. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal Languages, pp. 389–455. Springer, Heidelberg (1997). https://doi.org/10.1007/978-3-642-59126-6_7

    Chapter  Google Scholar 

  37. Trakhtenbrot, B.A.: Finite automata and monadic second order logic. Sib. Math. J. 3, 103–131 (1962). In Russian; English translation in Amer. Math. Soc. Transl. 59(1966), 23–55

    Google Scholar 

  38. van Glabbeek, R.J.: Bisimulations for higher dimensional automata. Email message, June 1991. http://theory.stanford.edu/~rvg/hda

  39. Wiener, N.: A contribution to the theory of relative position. Proc. Camb. Philos. Soc. 17, 441–449 (1914)

    Google Scholar 

  40. Zielonka, W.: Notes on finite asynchronous automata. RAIRO - Informatique Théorique et Applications 21(2), 99–135 (1987)

    Article  MathSciNet  Google Scholar 

  41. Ziemiański, K.: Stable components of directed spaces. Appl. Categ. Struct. 27(3), 217–244 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Bazille .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amrane, A., Bazille, H., Fahrenberg, U., Fortin, M. (2024). Logic and Languages of Higher-Dimensional Automata. In: Day, J.D., Manea, F. (eds) Developments in Language Theory. DLT 2024. Lecture Notes in Computer Science, vol 14791. Springer, Cham. https://doi.org/10.1007/978-3-031-66159-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66159-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66158-7

  • Online ISBN: 978-3-031-66159-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics