Abstract
We define a bidirectional compositional framework for Petri nets based on a line of work about compositionally defining games and computation models. This relies on defining structures with open ends that form interfaces they can be composed along. Together with this syntactic construction, we give a graphical language of morphisms in a PROP and a semantic category that describes the evolution of markings in a Petri net. Compared to previous work, the novelty is that computations in a Petri net are stateful, requiring specific care. This framework allows us to solve reachability compositionally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baez, J.C., Coya, B., Rebro, F.: Props in network theory. Theory Appl. Categ. 33(25), 727–783 (2018)
Baez, J.C., Maste, J.: Open Petri nets. Math. Struct. Comput. Sci. 30(3), 314–341 (2020)
Baez, J.C., Pollard, B.S.: A compositional framework for reaction networks. Rev. Math. Phys. 29(09), 1750028 (2017)
Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), 1–28 (2019)
Bonchi, F., Sobociński, P., Zanasi, F.: Interacting Hopf algebras. J. Pure Appl. Algebra 221(1), 144–184 (2017)
Carette, T., Horsman, D., Perdrix, S.: SZX-calculus: scalable graphical quantum reasoning. In: 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, 26–30 August 2019, Aachen, Germany, vol. 138, pp. 55:1–55:15 (2019)
Carette, T., Perdrix, S.: Colored props for large scale graphical reasoning (2020)
Fiore, M., Devesas Campos, M.: The algebra of directed acyclic graphs. In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 37–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38164-5_4
Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)
Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 119, pp. 447–468. Cambridge University Press (1996)
Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-4721-8
Penrose, R.: Applications of negative dimensional tensors. Comb. Math. Appl. 1, 221–244 (1971)
Peterson, J.L.: Petri nets. ACM Comput. Surv. (CSUR) 9(3), 223–252 (1977)
Rathke, J., Sobociński, P., Stephens, O.: Compositional reachability in petri nets. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 230–243. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11439-2_18
Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-69968-9
Reisig, W.: Understanding Petri Nets. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-33278-4
Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics, pp. 289–355. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9_4
Sobociński, P.: Compositional model checking of concurrent systems, with petri nets. arXiv preprint arXiv:1603.00976 (2016)
Stephens, O.: Compositional specification and reachability checking of net systems. Ph.D. thesis, University of Southampton (2015)
Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: A compositional approach to parity games. arXiv preprint arXiv:2112.14058 (2021)
Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: Compositional probabilistic model checking with string diagrams of MDPs. In: 35th International Conference on Computer Aided Verification (CAV 2023) (2023)
Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: Compositional solution of mean payoff games by string diagrams. arXiv preprint arXiv:2307.08034 (2023)
Acknowledgments
The authors are supported by CREST ZT-IoT Project (No. JPMJCR21M3), ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), and ASPIRE Grant No. JPMJAP2301, JST.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 IFIP International Federation for Information Processing
About this paper
Cite this paper
Lechenne, S., Eberhart, C., Hasuo, I. (2024). A Compositional Framework for Petri Nets. In: König, B., Urbat, H. (eds) Coalgebraic Methods in Computer Science. CMCS 2024. Lecture Notes in Computer Science, vol 14617. Springer, Cham. https://doi.org/10.1007/978-3-031-66438-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-66438-0_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66437-3
Online ISBN: 978-3-031-66438-0
eBook Packages: Computer ScienceComputer Science (R0)