Skip to main content

A Compositional Framework for Petri Nets

  • Conference paper
  • First Online:
Coalgebraic Methods in Computer Science (CMCS 2024)

Abstract

We define a bidirectional compositional framework for Petri nets based on a line of work about compositionally defining games and computation models. This relies on defining structures with open ends that form interfaces they can be composed along. Together with this syntactic construction, we give a graphical language of morphisms in a PROP and a semantic category that describes the evolution of markings in a Petri net. Compared to previous work, the novelty is that computations in a Petri net are stateful, requiring specific care. This framework allows us to solve reachability compositionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baez, J.C., Coya, B., Rebro, F.: Props in network theory. Theory Appl. Categ. 33(25), 727–783 (2018)

    MathSciNet  Google Scholar 

  2. Baez, J.C., Maste, J.: Open Petri nets. Math. Struct. Comput. Sci. 30(3), 314–341 (2020)

    Article  MathSciNet  Google Scholar 

  3. Baez, J.C., Pollard, B.S.: A compositional framework for reaction networks. Rev. Math. Phys. 29(09), 1750028 (2017)

    Article  MathSciNet  Google Scholar 

  4. Bonchi, F., Holland, J., Piedeleu, R., Sobociński, P., Zanasi, F.: Diagrammatic algebra: from linear to concurrent systems. Proc. ACM Program. Lang. 3(POPL), 1–28 (2019)

    Google Scholar 

  5. Bonchi, F., Sobociński, P., Zanasi, F.: Interacting Hopf algebras. J. Pure Appl. Algebra 221(1), 144–184 (2017)

    Article  MathSciNet  Google Scholar 

  6. Carette, T., Horsman, D., Perdrix, S.: SZX-calculus: scalable graphical quantum reasoning. In: 44th International Symposium on Mathematical Foundations of Computer Science, MFCS 2019, 26–30 August 2019, Aachen, Germany, vol. 138, pp. 55:1–55:15 (2019)

    Google Scholar 

  7. Carette, T., Perdrix, S.: Colored props for large scale graphical reasoning (2020)

    Google Scholar 

  8. Fiore, M., Devesas Campos, M.: The algebra of directed acyclic graphs. In: Coecke, B., Ong, L., Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 37–51. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38164-5_4

    Chapter  Google Scholar 

  9. Joyal, A., Street, R.: Braided tensor categories. Adv. Math. 102(1), 20–78 (1993)

    Article  MathSciNet  Google Scholar 

  10. Joyal, A., Street, R., Verity, D.: Traced monoidal categories. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 119, pp. 447–468. Cambridge University Press (1996)

    Google Scholar 

  11. Mac Lane, S.: Categories for the Working Mathematician, vol. 5. Springer, New York (2013). https://doi.org/10.1007/978-1-4757-4721-8

    Book  Google Scholar 

  12. Penrose, R.: Applications of negative dimensional tensors. Comb. Math. Appl. 1, 221–244 (1971)

    MathSciNet  Google Scholar 

  13. Peterson, J.L.: Petri nets. ACM Comput. Surv. (CSUR) 9(3), 223–252 (1977)

    Article  MathSciNet  Google Scholar 

  14. Rathke, J., Sobociński, P., Stephens, O.: Compositional reachability in petri nets. In: Ouaknine, J., Potapov, I., Worrell, J. (eds.) RP 2014. LNCS, vol. 8762, pp. 230–243. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11439-2_18

    Chapter  Google Scholar 

  15. Reisig, W.: Petri Nets: An Introduction, vol. 4. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-69968-9

    Book  Google Scholar 

  16. Reisig, W.: Understanding Petri Nets. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-642-33278-4

    Book  Google Scholar 

  17. Selinger, P.: A survey of graphical languages for monoidal categories. In: Coecke, B. (ed.) New Structures for Physics, pp. 289–355. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12821-9_4

    Chapter  Google Scholar 

  18. Sobociński, P.: Compositional model checking of concurrent systems, with petri nets. arXiv preprint arXiv:1603.00976 (2016)

  19. Stephens, O.: Compositional specification and reachability checking of net systems. Ph.D. thesis, University of Southampton (2015)

    Google Scholar 

  20. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: A compositional approach to parity games. arXiv preprint arXiv:2112.14058 (2021)

  21. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: Compositional probabilistic model checking with string diagrams of MDPs. In: 35th International Conference on Computer Aided Verification (CAV 2023) (2023)

    Google Scholar 

  22. Watanabe, K., Eberhart, C., Asada, K., Hasuo, I.: Compositional solution of mean payoff games by string diagrams. arXiv preprint arXiv:2307.08034 (2023)

Download references

Acknowledgments

The authors are supported by CREST ZT-IoT Project (No. JPMJCR21M3), ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), and ASPIRE Grant No. JPMJAP2301, JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clovis Eberhart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lechenne, S., Eberhart, C., Hasuo, I. (2024). A Compositional Framework for Petri Nets. In: König, B., Urbat, H. (eds) Coalgebraic Methods in Computer Science. CMCS 2024. Lecture Notes in Computer Science, vol 14617. Springer, Cham. https://doi.org/10.1007/978-3-031-66438-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66438-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66437-3

  • Online ISBN: 978-3-031-66438-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics