Skip to main content

Harnessing the Power of Graph Propagation in Lung Nodule Detection

  • Conference paper
  • First Online:
Artificial Intelligence in Medicine (AIME 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14845))

Included in the following conference series:

  • 696 Accesses

Abstract

Automatic detection of lung nodules has been a key element in modern medical research in the past decade. By utilizing accurate nodule detection approaches, lung cancer can be treated in its early stages, reducing its mortality rate. Manual detection of nodules is hindered by structures contained in the computed tomography scan images such as veins, bronchioles and lymphatics. Furthermore, nodules are tiny and sometimes have haphazard boundaries making them easy to miss. In this work, we propose a two-step lung nodule detection method that uses a novel hierarchical superpixel merging (HSPM) module to reduce the number of proposed regions of interest and couples it with a new graph neural network namely, the regional downsampled residual superpixel aggregation network (dRes-SPAN) to accurately detect nodules in the lung parenchyma. Experiments on the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset show a high improvement in performance in terms of nodule classification and detection while achieving an overall low false positive rate. A significant reduction in training time and trainable parameters has also been observed along with the relaxation in the requirement for heavy annotation compared to the state-of-the-art object detection architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armato, S.G., III., et al.: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans. Med. Phys. 38(2), 915–931 (2011). https://doi.org/10.1118/1.3528204

  2. Aydoghmishi, F.M., Modak, S., Abdel-Raheem, E., Rueda, L.: Examining the performance of melanoma classification using superpixel segmentation: a comparative analysis. In: 2023 International Conference on Microelectronics (ICM), pp. 113–118. IEEE (2023). https://doi.org/10.1109/ICM60448.2023.10378939

  3. Bae, J.H., et al.: Superpixel image classification with graph convolutional neural networks based on learnable positional embedding. Appl. Sci. 12(18), 9176 (2022). https://doi.org/10.3390/app12189176

    Article  Google Scholar 

  4. Van den Bergh, M., Boix, X., Roig, G., Van Gool, L.: SEEDS: superpixels extracted via energy-driven sampling. Int. J. Comput. Vis. 111, 298–314 (2015). https://doi.org/10.1007/s11263-014-0744-2

    Article  MathSciNet  Google Scholar 

  5. Bu, Z., et al.: Lung nodule detection based on YOLOv3 deep learning with limited datasets. Mol. Cell. Biomech. 19(1), 17–28 (2022). https://doi.org/10.32604/mcb.2022.018318

    Article  Google Scholar 

  6. Cheng, B., Wei, Y., Shi, H., Feris, R., Xiong, J., Huang, T.: Revisiting RCNN: on awakening the classification power of faster RCNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 473–490. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_28

    Chapter  Google Scholar 

  7. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  8. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  9. Han, K., Wang, Y., Guo, J., Tang, Y., Wu, E.: Vision GNN: An image is worth graph of nodes. In: Advances in Neural Information Processing Systems, vol. 35, pp. 8291–8303 (2022)

    Google Scholar 

  10. Han, Y., Wang, P., Kundu, S., Ding, Y., Wang, Z.: Vision HGNN: an image is more than a graph of nodes. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 19878–19888 (2023)

    Google Scholar 

  11. Hovinga, M., Sprengers, R., Kauczor, H.-U., Schaefer-Prokop, C.: CT imaging of interstitial lung diseases. In: Schoepf, U.J.J., Meinel, F.G.G. (eds.) Multidetector-Row CT of the Thorax. MR, pp. 105–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30355-0_7

    Chapter  Google Scholar 

  12. Ji, Z., et al.: Lung nodule detection in medical images based on improved YOLOv5s. IEEE Access (2023). https://doi.org/10.1109/ACCESS.2023.3296530

  13. Kim, M., et al.: Deep learning in medical imaging. Neurospine 16(4), 657 (2019). https://doi.org/10.14245/ns.1938396.198

  14. Li, R., Xiao, C., Huang, Y., Hassan, H., Huang, B.: Deep learning applications in computed tomography images for pulmonary nodule detection and diagnosis: a review. Diagnostics 12(2), 298 (2022). https://doi.org/10.3390/diagnostics12020298

    Article  Google Scholar 

  15. Liu, K.: STBi-YOLO: a real-time object detection method for lung nodule recognition. IEEE Access 10, 75385–75394 (2022). https://doi.org/10.1109/ACCESS.2022.3192034

    Article  Google Scholar 

  16. Ma, L., Li, G., Feng, X., Fan, Q., Liu, L.: TiCNet: transformer in convolutional neural network for pulmonary nodule detection on CT images. J. Imaging Inform. Med. 37, 196–208 (2024). https://doi.org/10.1007/s10278-023-00904-y

    Article  Google Scholar 

  17. Mkindu, H., Wu, L., Zhao, Y.: Lung nodule detection in chest CT images based on vision transformer network with Bayesian optimization. Biomed. Sig. Process. Control 85, 104866 (2023). https://doi.org/10.1016/j.bspc.2023.104866

    Article  Google Scholar 

  18. Modak, S., Abdel-Raheem, E., Rueda, L.: Applications of deep learning in disease diagnosis of chest radiographs: a survey on materials and methods. Biomed. Eng. Adv. 5, 100076 (2023). https://doi.org/10.1016/j.bea.2023.100076

    Article  Google Scholar 

  19. Modak, S., Abdel-Raheem, E., Rueda, L.: Lung nodule segmentation on CT scan images using Patchwise Iterative Graph Clustering. In: 2023 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1–5. IEEE (2023). https://doi.org/10.1109/ISCAS46773.2023.10181811

  20. Modak, S., Abdel-Raheem, E., Taha, L.Y.: A novel adaptive multilevel thresholding based algorithm for QRS detection. Biomed. Eng. Adv. 2, 100016 (2021). https://doi.org/10.1016/j.bea.2021.100016

    Article  Google Scholar 

  21. Nguyen, C.C., Tran, G.S., Burie, J.C., Nghiem, T.P., et al.: Pulmonary nodule detection based on faster R-CNN with adaptive anchor box. IEEE Access 9, 154740–154751 (2021). https://doi.org/10.1109/ACCESS.2021.3128942

    Article  Google Scholar 

  22. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv preprint arXiv:1804.02767 (2018). https://doi.org/10.48550/arXiv.1804.02767

  23. Usman, M., Rehman, A., Shahid, A., Latif, S., Shin, Y.G.: MEDS-Net: multi-encoder based self-distilled network with bidirectional maximum intensity projections fusion for lung nodule detection. Eng. Appl. Artif. Intell. 129, 107597 (2024). https://doi.org/10.1016/j.engappai.2023.107597

    Article  Google Scholar 

  24. Yagin, F.H., Alkhateeb, A., Colak, C., Azzeh, M., Yagin, B., Rueda, L.: A fecal-microbial-extracellular-vesicles-based metabolomics machine learning framework and biomarker discovery for predicting colorectal cancer patients. Metabolites 13(5), 589 (2023). https://doi.org/10.3390/metabo13050589

    Article  Google Scholar 

  25. Zhang, M., Liu, S., Zeng, B.: Hierarchical region proposal refinement network for weakly supervised object detection. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 669–673. IEEE (2021). https://doi.org/10.1109/ICIP42928.2021.9506087

Download references

Acknowledgments

This work has been funded by the Council of Canada (NSERC) Discovery Grants (RGPIN-2018-05523) and (RGPIN-2019-04696), and the University of Windsor, Office of Research Services and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Modak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Modak, S., Trivedi, Y., Abdel-Raheem, E., Rueda, L. (2024). Harnessing the Power of Graph Propagation in Lung Nodule Detection. In: Finkelstein, J., Moskovitch, R., Parimbelli, E. (eds) Artificial Intelligence in Medicine. AIME 2024. Lecture Notes in Computer Science(), vol 14845. Springer, Cham. https://doi.org/10.1007/978-3-031-66535-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66535-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66534-9

  • Online ISBN: 978-3-031-66535-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics