Skip to main content

The Uniform Anti-plagiarism System (JSA): The Role of Layout in Diploma Thesis Page Classification

  • Conference paper
  • First Online:
Digital Interaction and Machine Intelligence (MIDI 2023)

Abstract

The examination of thesis diplomas for instances of plagiarism can be a difficult and time-consuming task. However, some parts of these documents are more important and are more susceptible to being plagiarized than others. This work investigates four distinct approaches to the detection and exclusion of such irrelevant fragments from the process of plagiarism detection to reduce the cognitive load inflicted upon supervisors. We evaluate the relevance of image and text data on solving this task by exploring models that are multimodal, purely image-based, purely text-based, and based on handcrafted features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Distilbert base multilingual (cased). https://huggingface.co/distilbert-base-multilingual-cased. Accessed 15 Sep 2023

  2. Huggingface transformers library. https://github.com/huggingface/transformers. Accessed 15 Sep 2023

  3. JSA — uniform anti-plagiarism system. https://jsa.opi.org.pl/. Accessed 15 Sep 2023

  4. ORPPD — ogólnopolskie repozytorium pisemnych prac dyplomowych. https://polon.nauka.gov.pl/orpd/. Accessed 15 Sep 2023

  5. Kim, G., et al.: OCR-free document understanding transformer. arXiv:2111.15664 (2022)

  6. Kozłowski, M., et al.: JSA: jednolity system antyplagiatowy. Systemy Informatyczne Wspierające Naukę i Szkolnictwo Wyższe, Ośrodek Przetwarzania Informacji - Państwowy Instytut Badawczy (2021). https://books.google.pl/books?id=zTrRzgEACAAJ

  7. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  8. Parikh, R., Vasant, A.: Table of content detection using machine learning. Int. J. Artif. Intell. Appl. 4 (2013). https://doi.org/10.5121/ijaia.2013.4302

  9. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of BERT: smaller, faster, cheaper and lighter. arXiv arXiv:1910.01108 (2019)

  10. Zhang, C., Bengio, S., Hardt, M., Recht, B., Vinyals, O.: Understanding deep learning requires rethinking generalization. In: International Conference on Learning Representations (2017). https://openreview.net/forum?id=Sy8gdB9xx

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Karaś .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaś, D., Śpiewak, M. (2024). The Uniform Anti-plagiarism System (JSA): The Role of Layout in Diploma Thesis Page Classification. In: Biele, C., et al. Digital Interaction and Machine Intelligence. MIDI 2023. Lecture Notes in Networks and Systems, vol 1076. Springer, Cham. https://doi.org/10.1007/978-3-031-66594-3_3

Download citation

Publish with us

Policies and ethics