Skip to main content

Brains Over Brawn: Small AI Labs in the Age of Datacenter-Scale Compute

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2024)

Abstract

The prevailing trend towards large models that demand extensive computational resources threatens to marginalize smaller research labs, constraining innovation and diversity in the field. This position paper advocates for a strategic pivot of small institutions to research directions that are computationally economical, specifically through a modular approach inspired by neurobiological mechanisms. We argue for a balanced approach that draws inspiration from the brain’s energy-efficient processing and specialized structures, yet is liberated from the evolutionary constraints of biological growth. By focusing on modular architectures that mimic the brain’s specialization and adaptability, we can strive to keep energy consumption within reasonable bounds. Recent research into forward-only training algorithms has opened up concrete avenues to include such modules into existing networks. This approach not only aligns with the imperative to make AI research more sustainable and inclusive but also leverages the brain’s proven strategies for efficient computation. We posit that there exists a middle ground between the brain and datacenter-scale models that eschews the need for excessive computational power, fostering an environment where innovation is driven by ingenuity rather than computational capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Assran, M., et al.: Self-supervised learning from images with a joint-embedding predictive architecture. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15619–15629 (2023)

    Google Scholar 

  2. Bear, D.M., et al.: Unifying (machine) vision via counterfactual world modeling. arXiv preprint arXiv:2306.01828 (2023)

  3. Besiroglu, T., Bergerson, S.A., Michael, A., Heim, L., Luo, X., Thompson, N.: The compute divide in machine learning: a threat to academic contribution and scrutiny? arXiv preprint arXiv:2401.02452 (2024)

  4. Buchanan, M.: The limits of machine prediction. Nat. Phys. 15(4), 304 (2019)

    Article  Google Scholar 

  5. Chandran, K.S., Paul, A.M., Paul, A., Ghosh, K.: Psychophysics may be the game-changer for deep neural networks (DNNs) to imitate the human vision. Behav. Brain Sci. 46, e388 (2023)

    Article  Google Scholar 

  6. Cirne, W., et al.: Labs of the world, unite!!! J. Grid Comput. 4, 225–246 (2006)

    Article  Google Scholar 

  7. Crick, F.: The recent excitement about neural networks. Nature 337(6203), 129–132 (1989)

    Article  Google Scholar 

  8. Dean, J., et al.: Large scale distributed deep networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  9. Downing, P.E., Jiang, Y., Shuman, M., Kanwisher, N.: A cortical area selective for visual processing of the human body. Science 293(5539), 2470–2473 (2001)

    Article  Google Scholar 

  10. Epstein, R., Kanwisher, N.: A cortical representation of the local visual environment. Nature 392(6676), 598–601 (1998)

    Article  Google Scholar 

  11. Feldman, M., Siegel, D.S., Wright, M.: New developments in innovation and entrepreneurial ecosystems. Ind. Corp. Chang. 28(4), 817–826 (2019)

    Article  Google Scholar 

  12. Gaier, A., Ha, D.: Weight agnostic neural networks. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  13. Gardner, R.J., et al.: Toroidal topology of population activity in grid cells. Nature 602(7895), 123–128 (2022)

    Article  Google Scholar 

  14. Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15(1), 20–25 (1992)

    Article  Google Scholar 

  15. Gou, J., Yu, B., Maybank, S.J., Tao, D.: Knowledge distillation: a survey. Int. J. Comput. Vision 129(6), 1789–1819 (2021)

    Article  Google Scholar 

  16. Harris, J.J., Jolivet, R., Attwell, D.: Synaptic energy use and supply. Neuron 75(5), 762–777 (2012)

    Article  Google Scholar 

  17. Hawkins, J., Ahmad, S., Cui, Y.: A theory of how columns in the neocortex enable learning the structure of the world. Front. Neural Circuits 11, 295079 (2017)

    Article  Google Scholar 

  18. Hiesinger, P.R.: The Self-assembling Brain: How Neural Networks Grow Smarter. Princeton University Press, Princeton (2021)

    Book  Google Scholar 

  19. Hinton, G.: The forward-forward algorithm: some preliminary investigations. arXiv preprint arXiv:2212.13345 (2022)

  20. Huang, J.: Nvidia GTC keynote speech (2024). Quote around the 50:04 min mark

    Google Scholar 

  21. Ignat, O., et al.: A PhD student’s perspective on research in NLP in the era of very large language models. arXiv preprint arXiv:2305.12544 (2023)

  22. Itō, M.: The Cerebellum and Neural Control. Raven Press (1984)

    Google Scholar 

  23. Justin, M., Hubert, M.B., Betchewe, G., Doka, S.Y., Crepin, K.T.: Chaos in human brain phase transition. In: Bracken, P. (ed.) Research Advances in Chaos Theory, chap. 6. IntechOpen, Rijeka (2019). https://doi.org/10.5772/intechopen.86667

  24. Kanwisher, N., McDermott, J., Chun, M.M.: The fusiform face area: a module in human extrastriate cortex specialized for face perception (2002)

    Google Scholar 

  25. Kohan, A., Rietman, E.A., Siegelmann, H.T.: Signal propagation: the framework for learning and inference in a forward pass. IEEE Trans. Neural Netw. Learn. Syst. (2023)

    Google Scholar 

  26. Kübler-Ross, E.: The Five Stages of Grief. Routledge (1969)

    Google Scholar 

  27. Küfeoğlu, S., Özkuran, M.: Bitcoin mining: a global review of energy and power demand. Energy Res. Soc. Sci. 58, 101273 (2019)

    Article  Google Scholar 

  28. Lake, B.M., Ullman, T.D., Tenenbaum, J.B., Gershman, S.J.: Building machines that learn and think like people. Behav. Brain Sci. 40, e253 (2017)

    Article  Google Scholar 

  29. Land, M.F., Fernald, R.D.: The evolution of eyes. Annu. Rev. Neurosci. 15(1), 1–29 (1992)

    Article  Google Scholar 

  30. Leiserson, C.E., et al.: There’s plenty of room at the top: What will drive computer performance after Moore’s law? Science 368(6495), eaam9744 (2020)

    Google Scholar 

  31. Leopold, D.A., Logothetis, N.K.: Multistable phenomena: changing views in perception. Trends Cogn. Sci. 3(7), 254–264 (1999)

    Article  Google Scholar 

  32. Li, L., Fan, Y., Tse, M., Lin, K.Y.: A review of applications in federated learning. Comput. Industr. Eng. 149, 106854 (2020)

    Article  Google Scholar 

  33. Lukianov, M., Verbitsky, I., Cadaval, E.R., Strzelecki, R.: An overview of bidirectional EV chargers: empowering traction grid-powered chargers. In: Kyrylenko, O., Denysiuk, S., Strzelecki, R., Blinov, I., Zaitsev, I., Zaporozhets, A. (eds.) Power Systems Research and Operation. Studies in Systems, Decision and Control, vol. 512, pp. 191–230. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44772-3_9

    Chapter  Google Scholar 

  34. Manto, M., et al.: Consensus paper: roles of the cerebellum in motor control-the diversity of ideas on cerebellar involvement in movement. Cerebellum 11, 457–487 (2012)

    Article  Google Scholar 

  35. Molinari, M., Leggio, M.G., Silveri, M.C.: Verbal fluency and agrammatism. Int. Rev. Neurobiol. 41, 325–339 (1997)

    Article  Google Scholar 

  36. Moser, E.I., Moser, M.B., McNaughton, B.L.: Spatial representation in the hippocampal formation: a history. Nat. Neurosci. 20(11), 1448–1464 (2017)

    Article  Google Scholar 

  37. Muller, L., Reynaud, A., Chavane, F., Destexhe, A.: The stimulus-evoked population response in visual cortex of awake monkey is a propagating wave. Nat. Commun. 5(1), 3675 (2014)

    Article  Google Scholar 

  38. O’Keefe, J., Dostrovsky, J.: The hippocampus as a spatial map: preliminary evidence from unit activity in the freely-moving rat. Brain Res. (1971)

    Google Scholar 

  39. Ólafsdóttir, H.F., Bush, D., Barry, C.: The role of hippocampal replay in memory and planning. Curr. Biol. 28(1), R37–R50 (2018)

    Article  Google Scholar 

  40. Pande, V., et al.: Folding@ home. Distrib. Comput. (2010)

    Google Scholar 

  41. Pfeiffer, J., Ruder, S., Vulić, I., Ponti, E.: Modular deep learning. Trans. Mach. Learn. Res. (2023)

    Google Scholar 

  42. Ramsauer, H., et al.: Hopfield networks is all you need. arXiv preprint arXiv:2008.02217 (2020)

  43. Robbins, P.: Modularity of mind. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy. Winter 2017 edn. Metaphysics Research Lab, Stanford University (2017)

    Google Scholar 

  44. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986)

    Article  Google Scholar 

  45. Saphra, N., Fleisig, E., Cho, K., Lopez, A.: First tragedy, then parse: history repeats itself in the new era of large language models. arXiv preprint arXiv:2311.05020 (2023)

  46. Schmahmann, J.D.: The cerebellum and cognition. Neurosci. Lett. 688, 62–75 (2019)

    Article  Google Scholar 

  47. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. Commun. ACM 63(12), 54–63 (2020)

    Article  Google Scholar 

  48. Shazeer, N., et al.: Outrageously large neural networks: the sparsely-gated mixture-of-experts layer. In: Proceedings of the 5th International Conference on Learning Representations (2017)

    Google Scholar 

  49. Sherman, S.M., Guillery, R.: The role of the thalamus in the flow of information to the cortex. Philos. Trans. Roy. Soc. London. Ser. B: Biol. Sci. 357(1428), 1695–1708 (2002)

    Google Scholar 

  50. Shrestha, A., Fang, H., Mei, Z., Rider, D.P., Wu, Q., Qiu, Q.: A survey on neuromorphic computing: models and hardware. IEEE Circuits Syst. Mag. 22(2), 6–35 (2022)

    Article  Google Scholar 

  51. Sorbaro, M., Liu, Q., Bortone, M., Sheik, S.: Optimizing the energy consumption of spiking neural networks for neuromorphic applications. Front. Neurosci. 14 (2020). https://doi.org/10.3389/fnins.2020.00662, https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2020.00662

  52. Strubell, E., Ganesh, A., Mccallum, A.: Energy and policy considerations for deep learning in NLP. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pp. 3645–3650 (2019)

    Google Scholar 

  53. Su, N.M., Crandall, D.J.: The affective growth of computer vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9291–9300 (2021)

    Google Scholar 

  54. Sutton, R.: The bitter lesson. Incomplete Ideas (Blog) 13(1), 38 (2019)

    MathSciNet  Google Scholar 

  55. Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L.P., McGinnity, T.M.: A review of learning in biologically plausible spiking neural networks. Neural Netw. 122, 253–272 (2020)

    Article  Google Scholar 

  56. Togelius, J., Yannakakis, G.: Point of view: Choose your weapon: survival strategies for depressed AI academics. Proc. IEEE 112(1), 0018–9219 (2024)

    Article  Google Scholar 

  57. Vaswani, A., et al.: Attention is all you need. Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  58. de Vries, A.: The growing energy footprint of artificial intelligence. Joule 7(10), 2191–2194 (2023)

    Article  Google Scholar 

  59. Warren, G.S.: Regulating pot to save the polar bear: energy and climate impacts of the marijuana industry. Columbia J. Environ. law 40, 385 (2015)

    Google Scholar 

  60. Whittington, J.C., Warren, J., Behrens, T.E.: Relating transformers to models and neural representations of the hippocampal formation. In: International Conference on Learning Representations (2021)

    Google Scholar 

  61. Xiao, T.P., Bennett, C.H., Feinberg, B., Agarwal, S., Marinella, M.J.: Analog architectures for neural network acceleration based on non-volatile memory. Appl. Phys. Rev. 7(3) (2020)

    Google Scholar 

  62. Yassa, M.A., Stark, C.E.: Pattern separation in the hippocampus. Trends Neurosci. 34(10), 515–525 (2011)

    Article  Google Scholar 

  63. Zador, A.M.: A critique of pure learning and what artificial neural networks can learn from animal brains. Nat. Commun. 10(1), 3770 (2019)

    Article  Google Scholar 

  64. Zhou, X., Zhang, W., Xu, H., Zhang, T.: Effective sparsification of neural networks with global sparsity constraint. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3599–3608 (2021)

    Google Scholar 

  65. Zhuang, F., et al.: A comprehensive survey on transfer learning. Proc. IEEE 109(1), 43–76 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Flanders Make, the strategic research centre for the manufacturing industry in the NORM.AI project, and the Research Foundation - Flanders (FWO)(1SHDZ24N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Put .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Put, J., Michiels, N., Vanherle, B., Zoomers, B. (2024). Brains Over Brawn: Small AI Labs in the Age of Datacenter-Scale Compute. In: Fred, A., Hadjali, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2024. Communications in Computer and Information Science, vol 2172. Springer, Cham. https://doi.org/10.1007/978-3-031-66705-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66705-3_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66704-6

  • Online ISBN: 978-3-031-66705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics