Skip to main content

Time Series Prediction for Anomalies Detection in Concentrating Solar Power Plants Using Long Short-Term Memory Networks

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2024)

Abstract

Concentrating Solar Power (CSP) plants that use a parabolic trough system rely on Heat Transfer Fluid (HTF) to absorb thermal energy from sunlight. The heated HTF is then used in thermal power blocks to produce electricity in conventional steam generators. Unexpectedly high HTF temperatures may lead to degradation of the system components and reduced efficiency. Therefore, closely monitoring and maintaining the HTF’s operational temperatures is crucial to ensure the system’s efficiency and longevity. This paper focuses on the detection of over-temperature anomalies of HTF in CSP plants. Encoder-decoder Long Short-Term Memory (LSTM) networks are applied to predict HTF temperature in a time series, and subsequently, anomalies are detected based on the mean average error threshold. The study concludes by analysing the effectiveness of the encoder-decoder LSTM-based method in detecting over-temperature anomalies in historical plant data. The proposed approach allows operators to take preventive measures before any potential alarms by providing a 300-s forecast window.

The SmartCSP project, on which this publication is based, was funded by the German Federal Ministry of Economy, Energy and Climate Action under the grant number 03EE5084 C. The responsibility for the content of this publication lies with the author.

The authors would like to acknowledge the providing of the underlying data by the operators of the CSP plant Andasol 3, which contributed significantly to the development of the results presented in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-qaness, M.A.A., Ewees, A.A., Thanh, H.V., AlRassas, A.M., Dahou, A., Elaziz, M.A.: Predicting CO2 trapping in deep saline aquifers using optimized long short-term memory. Environ. Sci. Pollut. Res. 30(12), 33780–33794 (2022). https://doi.org/10.1007/s11356-022-24326-5

    Article  Google Scholar 

  2. Biewald, L.: Experiment tracking with weights and biases (2020). https://www.wandb.com/

  3. Chauhan, S., Vig, L.: Anomaly detection in ECG time signals via deep long short-term memory networks. In: 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), pp. 1–7 (2015). https://doi.org/10.1109/DSAA.2015.7344872

  4. Davis, J., Goadrich, M.: The relationship between precision-recall and roc curves. In: Proceedings of the 23rd International Conference on Machine Learning - ICML 2006. ACM Press (2006). https://doi.org/10.1145/1143844.1143874

  5. Ding, S., Morozov, A., Vock, S., Weyrich, M., Janschek, K.: Model-based error detection for industrial automation systems using LSTM networks. In: Zeller, M., Höfig, K. (eds.) IMBSA 2020. LNCS, vol. 12297, pp. 212–226. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58920-2_14

    Chapter  Google Scholar 

  6. Domingos, P.: A few useful things to know about machine learning. Commun. ACM 55(10), 78–87 (2012). https://doi.org/10.1145/2347736.2347755

    Article  Google Scholar 

  7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  8. Ibrahim, M., Alsheikh, A., Awaysheh, F., Alshehri, M.: Machine learning schemes for anomaly detection in solar power plants. Energies 15(3), 1082 (2022). https://doi.org/10.3390/en15031082

    Article  Google Scholar 

  9. Jungnickel, R., et al.: Automated anomaly detection in concentrated solar power plants using linear least squares approximation, pp. 1–6 (2024). https://doi.org/in print

  10. Kabir, S., Shufian, A., Zishan, M.S.R.: Isolation forest based anomaly detection and fault localization for solar PV system. In: 2023 3rd International Conference on Robotics, Electrical and Signal Processing Techniques (ICREST), pp. 341–345. IEEE (2023). https://doi.org/10.1109/ICREST57604.2023.10070033

  11. Kim, T.Y., Cho, S.B.: Web traffic anomaly detection using C-LSTM neural networks. Expert Syst. Appl. 106, 66–76 (2018). https://doi.org/10.1016/j.eswa.2018.04.004

    Article  Google Scholar 

  12. Kuchaiev, O., Ginsburg, B.: Factorization tricks for LSTM networks. ArXiv (2017). https://doi.org/10.48550/arXiv.1703.10722

  13. Kumar Dubey, A., Kumar, A., García-Díaz, V., Kumar Sharma, A., Kanhaiya, K.: Study and analysis of SARIMA and LSTM in forecasting time series data. Sustain. Energy Technol. Assess. 47, 101474 (2021). https://doi.org/10.1016/j.seta.2021.101474

    Article  Google Scholar 

  14. Latsou, C., Farsi, M., Erkoyuncu, J.A.: Digital twin-enabled automated anomaly detection and bottleneck identification in complex manufacturing systems using a multi-agent approach. J. Manuf. Syst. 67, 242–264 (2023). https://doi.org/10.1016/j.jmsy.2023.02.008

    Article  Google Scholar 

  15. Liang, T., Glossner, J., Wang, L., Shi, S., Zhang, X.: Pruning and quantization for deep neural network acceleration: a survey. Neurocomputing 461, 370–403 (2021). https://doi.org/10.1016/j.neucom.2021.07.045

    Article  Google Scholar 

  16. Lindemann, B., Maschler, B., Sahlab, N., Weyrich, M.: A survey on anomaly detection for technical systems using LSTM networks. Comput. Ind. 131, 103498 (2021). https://doi.org/10.1016/j.compind.2021.103498

    Article  Google Scholar 

  17. Malhotra, P., Vig, L., Shroff, G.M., Agarwal, P.: Long short term memory networks for anomaly detection in time series. In: The European Symposium on Artificial Neural Networks (2015). https://api.semanticscholar.org/CorpusID:43680425

  18. Mesas-Carrascosa, F., Verdú Santano, D., Pérez Porras, F., Meroño-Larriva, J., García-Ferrer, A.: The development of an open hardware and software system onboard unmanned aerial vehicles to monitor concentrated solar power plants. Sensors 17(6), 1329 (2017). https://doi.org/10.3390/s17061329

    Article  Google Scholar 

  19. Naseer, S., et al.: Enhanced network anomaly detection based on deep neural networks. IEEE Access 6, 48231–48246 (2018). https://doi.org/10.1109/ACCESS.2018.2863036

    Article  Google Scholar 

  20. Niu, Z., Yu, K., Wu, X.: LSTM-based VAE-GAN for time-series anomaly detection. Sensors 20(13) (2020). https://doi.org/10.3390/s20133738

  21. Park, D., Hoshi, Y., Kemp, C.C.: A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder. IEEE Robot. Autom. Lett. 3(3), 1544–1551 (2018). https://doi.org/10.1109/LRA.2018.2801475

    Article  Google Scholar 

  22. Schmidl, S., Wenig, P., Papenbrock, T.: Anomaly detection in time series. Proc. VLDB Endow. 15(9), 1779–1797 (2022). https://doi.org/10.14778/3538598.3538602

  23. Vignarooban, K., Xu, X., Arvay, A., Hsu, K., Kannan, A.M.: Heat transfer fluids for concentrating solar power systems - a review. Appl. Energy 146, 383–396 (2015). https://doi.org/10.1016/j.apenergy.2015.01.125

    Article  Google Scholar 

  24. Vo Thanh, H., Sheini Dashtgoli, D., Zhang, H., Min, B.: Machine-learning-based prediction of oil recovery factor for experimental CO2-foam chemical EOR: implications for carbon utilization projects. Energy 278, 127860 (2023). https://doi.org/10.1016/j.energy.2023.127860

  25. Zhang, C., et al.: A deep neural network for unsupervised anomaly detection and diagnosis in multivariate time series data. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, pp. 1409–1416 (2019). https://doi.org/10.1609/aaai.v33i01.33011409

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Olbrych .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Olbrych, S. et al. (2024). Time Series Prediction for Anomalies Detection in Concentrating Solar Power Plants Using Long Short-Term Memory Networks. In: Fred, A., Hadjali, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2024. Communications in Computer and Information Science, vol 2172. Springer, Cham. https://doi.org/10.1007/978-3-031-66705-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66705-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66704-6

  • Online ISBN: 978-3-031-66705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics