Skip to main content

Bayes Classification Using an Approximation to the Joint Probability Distribution of the Attributes

  • Conference paper
  • First Online:
Deep Learning Theory and Applications (DeLTA 2024)

Abstract

The Naive-Bayes classifier is widely used due to its simplicity, speed and accuracy. However this approach fails when, for at least one attribute value in a test sample, there are no corresponding training samples with that attribute value. This is known as the zero frequency problem and is typically addressed using Laplace Smoothing. However, Laplace Smoothing does not take into account the statistical characteristics of the neighbourhood of the attribute values of the test sample. Gaussian Naive Bayes addresses this but the resulting Gaussian model is formed from global information. We instead propose an approach that estimates conditional probabilities using information in the neighbourhood of the test sample. In this case we no longer need to make the assumption of independence of attribute values and hence consider the joint probability distribution conditioned on the given class which means our approach (unlike the Gaussian and Laplace approaches) takes into consideration dependencies among the attribute values. We illustrate the performance of the proposed approach on a wide range of datasets taken from the University of California at Irvine (UCI) Machine Learning Repository. We also include results for the k-NN classifier and demonstrate that the proposed approach is simple, robust and outperforms standard approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parzen, E.: On estimation of a probability density function and mode. Ann. Math. Stat. 33(3), 1065–1076 (1962)

    Article  MathSciNet  Google Scholar 

  2. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian network classifiers. Mach. Learn. 29, 131–163 (1997)

    Article  Google Scholar 

  3. Jiang, L., Zhang, H., Cai, Z.: A novel bayes model: hidden naive bayes. IEEE Trans. Knowl. Data Eng. 21(10), 1361–1371 (2009)

    Article  Google Scholar 

  4. Yu, L., Gan, S., Chen, Y., Luo, D.: A novel hybrid approach: instance weighted hidden naive bayes. Mathematics 9(22), 2982 (2021)

    Article  Google Scholar 

  5. Langley, P., Sage, S.: Induction of selective Bayesian classifiers. In: UAI (1994)

    Google Scholar 

  6. Lee, C.-H., Gutierrez, F., Dou, D.: Calculating feature weights in naive bayes with Kullback-Leibler measure. In: 2011 IEEE 11th International Conference on Data Mining, pp. 1146–1151 (2011)

    Google Scholar 

  7. Foo, N.I.L.-K., Chua, S.-L.: Attribute weighted naïve bayes classifier. Comput. Mater. Continua 71(1), 1945–1957 (2022)

    Article  Google Scholar 

  8. Xie, Z., Hsu, W., Liu, Z., Lee, M.L.: SNNB: a selective neighborhood based naïve bayes for lazy learning. In: Chen, M.S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS, vol. 2336, pp. 104–114. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47887-6_10

    Chapter  Google Scholar 

  9. Gweon, H., Schonlau, M., Steiner, S.H.: The k conditional nearest neighbor algorithm for classification and class probability estimation. PeerJ Comput. Sci. 5, e194 (2019)

    Article  Google Scholar 

  10. Frank, E., Hall, M., Pfahringer, B.: Locally weighted naive bayes. In: Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, UAI 2003, pp. 249-256. Morgan Kaufmann Publishers Inc., San Francisco (2002)

    Google Scholar 

  11. Chandra, B., Gupta, M., Gupta, M.P.: Robust approach for estimating probabilities in naive-bayes classifier. In: Ghosh, A., De, R.K., Pal, S.K. (eds.) PReMI 2007. LNCS, vol. 4815, pp. 11–16. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77046-6_2

    Chapter  Google Scholar 

  12. Baboolal, K.: GitHub repository (2022)

    Google Scholar 

  13. Dua, D., Graff, C.: UCI machine learning repository (2017)

    Google Scholar 

  14. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics 7(2), 179–188 (1936)

    Article  Google Scholar 

  15. da Silva, J.E., de Sá, J.P.M., Jossinet, J.: Classification of breast tissue by electrical impedance spectroscopy. Med. Biol. Eng. Comput. 38(1), 26–30 (2000)

    Article  Google Scholar 

  16. Abid, F., Izeboudjen, N.: Predicting forest fire in Algeria using data mining techniques: case study of the decision tree algorithm. In: Ezziyyani, M. (ed.) AI2SD 2019. AISC, vol. 1105, pp. 363–370. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36674-2_37

    Chapter  Google Scholar 

  17. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  18. Aeberhard, S., Coomans, D., De Vel, O.: Comparative analysis of statistical pattern recognition methods in high dimensional settings. Pattern Recogn. 27(8), 1065–1077 (1994)

    Article  Google Scholar 

  19. Zwitter, M., Soklic, M.: UCI machine learning repository (1988)

    Google Scholar 

  20. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decision Support Systems 47(4), 547–553 (2009)

    Article  Google Scholar 

  21. Aha, D.W.: Incremental constructive induction: an instance-based approach. In: ML (1991)

    Google Scholar 

  22. Nakai, K., Kanehisa, M.: A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14(4), 897–911 (1992)

    Article  Google Scholar 

  23. Cinar, I., Koklu, M., Tasdemir, S.: Classification of raisin grains using machine vision and artificial intelligence methods. Gazi Muhendislik Bilimleri Dergisi (GMBD) 6(3), 200–209 (2020)

    Google Scholar 

  24. Evett, I.W., Spiehler, E.J.: rule induction in forensic science. In: KBS in Government, pp. 107–118. Online Publications (1987)

    Google Scholar 

  25. Silva, P.F.B., Marçal, A.R.S., da Silva, R.M.A.: Evaluation of features for leaf discrimination. In: Kamel, M., Campilho, A. (eds.) ICIAR 2013. LNCS, vol. 7950, pp. 197–204. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39094-4_23

    Chapter  Google Scholar 

  26. Lohweg, V., Derksen, H.: UCI machine learning repository (2012)

    Google Scholar 

  27. Koklu, M., Ozkan, I.A.: Multiclass classification of dry beans using computer vision and machine learning techniques. Comput. Electron. Agric. 174, 105507 (2020)

    Article  Google Scholar 

  28. Nash, W.J., Tasmania. Marine Research Laboratories: The Population Biology of Abalone (Haliotis Species) in Tasmania: Blacklip abalone (H. rubra) from the north coast and the islands of Bass Strait. Number v. 1 in Technical report (Tasmania. Sea Fisheries Division). Sea Fisheries Division, Marine Research Laboratories - Taroona, Department of Primary Industry and Fisheries, Tasmania (1994)

    Google Scholar 

  29. Banerjee, P.: Comprehensive guide on feature selection (2020)

    Google Scholar 

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Baboolal .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no financial or proprietary interests in any material discussed in this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hosein, P., Baboolal, K. (2024). Bayes Classification Using an Approximation to the Joint Probability Distribution of the Attributes. In: Fred, A., Hadjali, A., Gusikhin, O., Sansone, C. (eds) Deep Learning Theory and Applications. DeLTA 2024. Communications in Computer and Information Science, vol 2172. Springer, Cham. https://doi.org/10.1007/978-3-031-66705-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66705-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66704-6

  • Online ISBN: 978-3-031-66705-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics