Skip to main content

GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Breast cancer is a major global health concern. Pathologists face challenges in analyzing complex features from pathological images, which is a time-consuming and labor-intensive task. Therefore, efficient computer-based diagnostic tools are needed for early detection and treatment planning. This paper presents a modified version of MultiResU-Net for histopathology image segmentation, which is selected as the backbone for its ability to analyze and segment complex features at multiple scales and ensure effective feature flow via skip connections. The modified version also utilizes the Gaussian distribution-based Attention Module (GdAM) to incorporate histopathology-relevant text information in a Gaussian distribution. The sampled features from the Gaussian text feature-guided distribution highlight specific spatial regions based on prior knowledge. Finally, using the Controlled Dense Residual Block (CDRB) on skip connections of MultiResU-Net, the information is transferred from the encoder layers to the decoder layers in a controlled manner using a scaling parameter derived from the extracted spatial features. We validate our approach on two diverse breast cancer histopathology image datasets: TNBC and MonuSeg, demonstrating superior segmentation performance compared to state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 24 July 2024

    A correction has been published.

References

  1. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  2. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

  3. Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 801–818 (2018)

    Google Scholar 

  4. Das, N., Saha, S., Nasipuri, M., Basu, S., Chakraborti, T.: Deep-fuzz: a synergistic integration of deep learning and fuzzy water flows for fine-grained nuclei segmentation in digital pathology. PLoS ONE 18(6), e0286862 (2023)

    Article  Google Scholar 

  5. Diakogiannis, F.I., Waldner, F., Caccetta, P., Wu, C.: Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote. Sens. 162, 94–114 (2020)

    Article  Google Scholar 

  6. Feng, Z., et al.: Mutual-complementing framework for nuclei detection and segmentation in pathology image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4036–4045 (2021)

    Google Scholar 

  7. Fu, Y., Liu, J., Shi, J.: Tsca-net: transformer based spatial-channel attention segmentation network for medical images. Comput. Biol. Med. 170, 107938 (2024)

    Article  Google Scholar 

  8. Husham, A., Hazim Alkawaz, M., Saba, T., Rehman, A., Saleh Alghamdi, J.: Automated nuclei segmentation of malignant using level sets. Microsc. Res. Tech. 79(10), 993–997 (2016)

    Article  Google Scholar 

  9. Ibtehaz, N., Rahman, M.S.: Multiresunet: rethinking the u-net architecture for multimodal biomedical image segmentation. Neural Netw. 121, 74–87 (2020)

    Article  Google Scholar 

  10. Islam Sumon, R., et al.: Densely convolutional spatial attention network for nuclei segmentation of histological images for computational pathology. Front. Oncol. 13, 1009681 (2023)

    Google Scholar 

  11. Jadon, S.: A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), pp. 1–7. IEEE (2020)

    Google Scholar 

  12. Kanadath, A., Angel Arul Jothi, J., Urolagin, S.: Multilevel multiobjective particle swarm optimization guided superpixel algorithm for histopathology image detection and segmentation. J. Imaging 9(4), 78 (2023)

    Google Scholar 

  13. Keaton, M.R., Zaveri, R.J., Doretto, G.: Celltranspose: few-shot domain adaptation for cellular instance segmentation. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 455–466 (2023)

    Google Scholar 

  14. Kumar, N., et al.: A multi-organ nucleus segmentation challenge. IEEE Trans. Med. Imaging 39(5), 1380–1391 (2019)

    Google Scholar 

  15. Kuo, T.C., Cheng, T.W., Lin, C.K., Chang, M.C., Cheng, K.Y., Cheng, Y.C.: Using deeplab v3+-based semantic segmentation to evaluate platelet activation. Med. Biol. Eng. Comput. 60(6), 1775–1785 (2022)

    Article  MATH  Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Metter, D.M., Colgan, T.J., Leung, S.T., Timmons, C.F., Park, J.Y.: Trends in the us and canadian pathologist workforces from 2007 to 2017. JAMA Netw. Open 2(5), e194337–e194337 (2019)

    Article  Google Scholar 

  18. Naylor, P., Laé, M., Reyal, F., Walter, T.: Segmentation of nuclei in histopathology images by deep regression of the distance map. IEEE Trans. Med. Imaging 38(2), 448–459 (2018)

    Article  Google Scholar 

  19. Oktay, O., et al.: Attention u-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Qi, J.: Dense nuclei segmentation based on graph cut and convexity-concavity analysis. J. Microsc. 253(1), 42–53 (2014)

    Article  MATH  Google Scholar 

  21. Ranefall, P., Egevad, L., Nordin, B., Bengtsson, E.: A new method for segmentation of colour images applied to immunohistochemically stained cell nuclei. Anal. Cell. Pathol. 15(3), 145–156 (1997)

    Article  Google Scholar 

  22. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, 5–9 October 2015, Proceedings, Part III, vol. 18, pp. 234–241. Springer (2015)

    Google Scholar 

  23. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Distilbert, a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint arXiv:1910.01108 (2019)

  24. Singha, A., Bhowmik, M.K.: Alexsegnet: an accurate nuclei segmentation deep learning model in microscopic images for diagnosis of cancer. Multim. Tools Appl. 82(13), 20431–20452 (2023)

    Google Scholar 

  25. Soomro, T.A., Afifi, A.J., Gao, J., Hellwich, O., Paul, M., Zheng, L.: Strided u-net model: Retinal vessels segmentation using dice loss. In: 2018 Digital Image Computing: Techniques and Applications (DICTA), pp. 1–8. IEEE (2018)

    Google Scholar 

  26. Sornapudi, S., et al.: Deep learning nuclei detection in digitized histology images by superpixels. J. Pathol. Inform. 9(1), 5 (2018)

    Google Scholar 

  27. Su, Z., Li, W., Ma, Z., Gao, R.: An improved u-net method for the semantic segmentation of remote sensing images. Appl. Intell. 52(3), 3276–3288 (2022)

    Article  MATH  Google Scholar 

  28. Valanarasu, J.M.J., Oza, P., Hacihaliloglu, I., Patel, V.M.: Medical transformer: gated axial-attention for medical image segmentation. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021, pp. 36–46. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_4

  29. Wazir, S., Fraz, M.M.: Histoseg: Quick attention with multi-loss function for multi-structure segmentation in digital histology images. In: 2022 12th International Conference on Pattern Recognition Systems (ICPRS, pp. 1–7. IEEE (2022)

    Google Scholar 

  30. Xia, L., Qu, Z., An, J., Gao, Z.: A weakly supervised method with colorization for nuclei segmentation using point annotations. IEEE Trans. Instrum. Measur. 72, 1–11 (2023)

    Article  MATH  Google Scholar 

  31. Xu, H., Lu, C., Mandal, M.: An efficient technique for nuclei segmentation based on ellipse descriptor analysis and improved seed detection algorithm. IEEE J. Biomed. Health Inform. 18(5), 1729–1741 (2014)

    Article  MATH  Google Scholar 

  32. Xu, Q., Kuang, W., Zhang, Z., Bao, X., Chen, H., Duan, W.: Sppnet: a single-point prompt network for nuclei image segmentation. arXiv preprint arXiv:2308.12231 (2023)

  33. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2881–2890 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii Kaplun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, A., Pramanik, P., Ghosal, S., Valenkova, D., Kaplun, D., Sarkar, R. (2024). GRU-Net: Gaussian Attention Aided Dense Skip Connection Based MultiResUNet for Breast Histopathology Image Segmentation. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66955-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66954-5

  • Online ISBN: 978-3-031-66955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics