Skip to main content

Unsupervised Anomaly Detection on Histopathology Images Using Adversarial Learning and Simulated Anomaly

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14859))

Included in the following conference series:

  • 516 Accesses

Abstract

Automated analytics in computational histopathology have shown significant progress in aiding pathologists through digital image analysis. However, developing a robust model based on supervised learning for histopathology images is challenging because of the scarcity of tumor-marked samples and unknown diseases. Unsupervised anomaly detection (UAD) methods that were mostly used in industrial inspection are thus proposed to facilitate efficient analytics. UAD only requires normal samples for training and largely reduces the burden of labeling. In this paper, we introduce a reconstruction-based UAD approach called PathUAD to improve representation learning based on adversarial learning and simulated anomalies. On the one hand, we mix up features extracted from normal images to build a smoother feature distribution and employ adversarial learning to enhance an autoencoder for image reconstruction. On the other hand, we simulate anomalous images by image deformation, and guide the autoencoder to catch global characteristics of normal images well. We demonstrate its effectiveness on a histopathology anomaly detection benchmark and show state-of-the-art performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akcay, S., Atapour-Abarghouei, A., Breckon, T.P.: GANomaly: semi-supervised anomaly detection via adversarial training. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11363, pp. 622–637. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20893-6_39

    Chapter  Google Scholar 

  2. Bao, J., Sun, H., Deng, H., He, Y., Zhang, Z., Li, X.: BMAD: benchmarks for medical anomaly detection. arXiv arXiv:2306.11876 (2023)

  3. Bejnordi, B.E., et al.: The CAMELYON16 consortium: diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. J. Am. Med. Assoc. 318(22), 2199–2210 (2017)

    Article  MATH  Google Scholar 

  4. Chang, Y.C., et al.: VCP maintains nuclear size by regulating the DNA damage-associated MDC1-p53-autophagy axis in Drosophila. Nat. Commun. 12(1), 4258 (2021)

    Article  MATH  Google Scholar 

  5. Chen, L., You, Z., Zhang, N., Xi, J., Le, X.: UTRAD: anomaly detection and localization with U-transformer. Neural Netw. 147, 53–62 (2022)

    Article  Google Scholar 

  6. Defard, T., Setkov, A., Loesch, A., Audigier, R.: PaDiM: a patch distribution modeling framework for anomaly detection and localization. In: Del Bimbo, A., et al. (eds.) ICPR 2021. LNCS, vol. 12664, pp. 475–489. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-68799-1_35

    Chapter  Google Scholar 

  7. Deng, H., Li., X.: Anomaly detection via reverse distillation from one-class embedding. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9727–9736 (2022)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  9. Gudovskiy, D., Ishizaka, S., Kozuka, K.: CFLOW-AD: real-time unsupervised anomaly detection with localization via conditional normalizing flows. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, pp. 1819–1828 (2022)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Proceedings of Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  12. Lee, S., Lee, S., Song, B.C.: CFA: coupled-hypersphere-based feature adaptation for target-oriented anomaly localization. IEEE Access 10, 78446–78454 (2022)

    Article  MATH  Google Scholar 

  13. Li, B., Li, Y., Eliceiri, K.W.: Dual-stream multiple instance learning network for whole slide image classification with self-supervised contrastive learning. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14313–14323 (2021)

    Google Scholar 

  14. Li, C.L., Yoon, K.S.J., Pfister, T.: CutPaste: self-supervised learning for anomaly detection and localization. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9659–9669 (2021)

    Google Scholar 

  15. Li, Y., Ping, W.: Cancer metastasis detection with neural conditional random field. arXiv arXiv:1806.07064 (2018)

  16. Linmans, J., Raya, G., van der Laak, J., Litjens, G.: Diffusion models for out-of-distribution detection in digital pathology. Med. Image Anal. 93, 103088 (2024)

    Article  Google Scholar 

  17. Liu, Z., Zhou, Y., Xu, Y., Wang, Z.: SimpleNet: a simple network for image anomaly detection and localization. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20402–20411 (2023)

    Google Scholar 

  18. Lu, M.Y., Williamson, D.F.K., Chen, T.Y., Chen, R.J., Barbieri, M., Mahmood, F.: Data-efficient and weakly supervised computational pathology on whole-slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021)

    Article  MATH  Google Scholar 

  19. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Smolley, S.P.: Least squares generative adversarial networks. In: Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  20. Meissen, F., Wiestler, B., Kaissis, G., Rueckert, D.: On the pitfalls of using the residual error as anomaly score. In: Proceedings of Medical Imaging with Deep Learning, pp. 914–928 (2022)

    Google Scholar 

  21. Milda, M.P., Eilertsen, G., Lundström, C.: Unsupervised anomaly detection in digital pathology using GANs. In: Proceedings of IEEE International Symposium on Biomedical Imaging, pp. 1878–1882 (2021)

    Google Scholar 

  22. Pinaya, W.H.L., et al.: Fast unsupervised brain anomaly detection and segmentation with diffusion models. In: Proceedings of Medical Image Computing and Computer Assisted Intervention, vol. 13438, pp. 705–714 (2022)

    Google Scholar 

  23. Roth, K., Pemula, L., Zepeda, J., Schölkopf, B., Brox, T., Gehler, P.: Towards total recall in industrial anomaly detection. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14298–14308 (2022)

    Google Scholar 

  24. Rudolph, M., Wehrbein, T., Rosenhahn, B., Wandt, B.: Fully convolutional cross-scale-flows for image-based defect detection. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision, pp. 1829–1838 (2022)

    Google Scholar 

  25. Ruff, L., et al.: Deep one-class classification. In: Proceedings of International Conference on Machine Learning, vol. 80, pp. 4393–4402 (2018)

    Google Scholar 

  26. Salehi, M., Sadjadi, N., Baselizadeh, S., Rohban, M.H., Rabiee, H.R.: Multiresolution knowledge distillation for anomaly detection. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14897–14907 (2021)

    Google Scholar 

  27. Schlegl, T., Seeböck, P., Waldstein, S.M., Langs, G., Schmidt-Erfurth, U.: f-AnoGAN: fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54, 30–44 (2019)

    Article  Google Scholar 

  28. Shao, Z., et al.: TransMIL: transformer based correlated multiple instance learning for whole slide image classification. In: Proceedings of Advances in Neural Information Processing Systems, vol. 34, pp. 2136–2147 (2021)

    Google Scholar 

  29. Shvetsova, N., Bakker, B., Fedulova, I., Schulz, H., Dylov, D.V.: Anomaly detection in medical imaging with deep perceptual autoencoders. IEEE Access 9, 118571–118583 (2021)

    Article  Google Scholar 

  30. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  31. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  MATH  Google Scholar 

  32. Yamada, S., Hotta, K.: Reconstruction student with attention for student-teacher pyramid matching. arXiv arXiv:2111.15376 (2021)

  33. Zavrtanik, V., Kristan, M., Skočaj, D.: DrÆm - a discriminatively trained reconstruction embedding for surface anomaly detection. In: Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 8310–8319 (2021)

    Google Scholar 

  34. Zhang, X., Li, N., Li, J., Dai, T., Jiang, Y., Xia, S.T.: Unsupervised surface anomaly detection with diffusion probabilistic model. In: Proceedings of IEEE/CVF International Conference on Computer Vision, pp. 6759–6768 (2023)

    Google Scholar 

  35. Štepec, D., Skočaj, D.: Unsupervised detection of cancerous regions in histology imagery using image-to-image translation. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 3780–3787 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was funded in part by Qualcomm through a Taiwan University Research Collaboration Project and in part by the National Science and Technology Council, Taiwan, under grants 113-2425-H-006-007, 112-2634-F-006-002, 112-2221-E-006-136-MY3, 112-2622-E-006-021, and 110-2221-E-006-127-MY3.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Chen Lai or Wei-Ta Chu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lai, YC., Chu, WT. (2024). Unsupervised Anomaly Detection on Histopathology Images Using Adversarial Learning and Simulated Anomaly. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66955-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66954-5

  • Online ISBN: 978-3-031-66955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics