Abstract
Computational quantification of magnetic resonance imaging (MRI) response from neurovascular structures is used to investigate potential biomarkers for different types of cerebrovascular deteriorations at the microscopic scale. Simulation-based MRI requires fully resolved microvascular structures, with geometric and physiological parameters, from tissue volumes captured using microscopic imaging modalities, e.g., optical coherence tomography (OCT). The preparation of such input models hinders large cohort studies and requires extensive manual effort. Here, we propose using 3D neural networks as an alternative learning-based solution over MRI simulation schemes. We trained state-of-the-art 3D neural networks to predict the spin echo (SE) MRI response from OCT microvascular volumes. By validating against simulated signals, our result demonstrates that the 3D ResNet-based regression network achieves a high accuracy to predict MRI signals with an average mean square error (MSE) <1%, R2 of 82.8% and explained variance score of 82.9%.
This work was supported by internal funding from the United Arab Emirates University under Grant Numbers 12T037 and 12R239.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015)
Brosch, T., Tam, R., Initiative, A.D.N.: Manifold learning of brain MRIs by deep learning. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, 22–26 September 2013, Proceedings, Part II 16, pp. 633–640. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-40763-5_78
Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare, November 2022. https://doi.org/10.48550/arXiv.2211.02701
Chen, X., et al.: Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 79, 102444 (2022)
Damseh, R., Delafontaine-Martel, P., Pouliot, P., Cheriet, F., Lesage, F.: Laplacian flow dynamics on geometric graphs for anatomical modeling of cerebrovascular networks. IEEE Trans. Med. Imaging 40(1), 381–394 (2020)
Damseh, R., et al.: A simulation study investigating potential diffusion-based MRI signatures of microstrokes. Sci. Rep. 11(1), 14229 (2021)
Gagnon, L., et al.: Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J. Neurosci. 35(8), 3663–3675 (2015)
Gagnon, L., Smith, A.F., Boas, D.A., Devor, A., Secomb, T.W., Sakadžić, S.: Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow, and oxygenation. Front. Comput. Neurosci. 10, 82 (2016)
Ghafoorian, M., et al.: Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1414–1417. IEEE (2016)
Gounis, M.J., et al.: Intravascular optical coherence tomography for neurointerventional surgery. Stroke 50(1), 218–223 (2019)
Guo, Y., et al.: Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: 17th International Conference, Boston, MA, USA, 14–18 September 2014, Proceedings, Part II 17, pp. 308–315. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_39
Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)
Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)
Nakagawa, S., Schielzeth, H.: A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013). https://doi.org/10.1111/j.2041-210x.2012.00261.x
Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, 17–21 October 2016, Proceedings, Part II 19, pp. 212–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_25
Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)
Pouliot, P., et al.: Magnetic resonance fingerprinting based on realistic vasculature in mice. Neuroimage 149, 436–445 (2017)
Suk, H.I., Lee, S.W., Shen, D., Initiative, A.D.N., et al.: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569–582 (2014)
Suk, H.I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, 22–26 September 2013, Proceedings, Part II 16, pp. 583–590. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-40763-5_72
Ughi, G.J., et al.: A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy. Nat. Commun. 11(1), 3851 (2020)
Xu, R., et al.: Optical coherence tomography in cerebrovascular disease: open up new horizons. Transl. Stroke Res. 14(2), 137–145 (2023)
Yang, J., et al.: Volumetric characterization of microvasculature in ex vivo human brain samples by serial sectioning optical coherence tomography. IEEE Trans. Biomed. Eng. 69(12), 3645–3656 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Rustamov, J., Rustamov, Z., Badawi, N., Lesage, F., Zaki, N., Damseh, R. (2024). Learning-Based MRI Response Predictions from OCT Microvascular Models to Replace Simulation-Based Frameworks. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-66955-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66954-5
Online ISBN: 978-3-031-66955-2
eBook Packages: Computer ScienceComputer Science (R0)