Skip to main content

Learning-Based MRI Response Predictions from OCT Microvascular Models to Replace Simulation-Based Frameworks

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14859))

Included in the following conference series:

  • 391 Accesses

Abstract

Computational quantification of magnetic resonance imaging (MRI) response from neurovascular structures is used to investigate potential biomarkers for different types of cerebrovascular deteriorations at the microscopic scale. Simulation-based MRI requires fully resolved microvascular structures, with geometric and physiological parameters, from tissue volumes captured using microscopic imaging modalities, e.g., optical coherence tomography (OCT). The preparation of such input models hinders large cohort studies and requires extensive manual effort. Here, we propose using 3D neural networks as an alternative learning-based solution over MRI simulation schemes. We trained state-of-the-art 3D neural networks to predict the spin echo (SE) MRI response from OCT microvascular volumes. By validating against simulated signals, our result demonstrates that the 3D ResNet-based regression network achieves a high accuracy to predict MRI signals with an average mean square error (MSE) <1%, R2 of 82.8% and explained variance score of 82.9%.

This work was supported by internal funding from the United Arab Emirates University under Grant Numbers 12T037 and 12R239.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Brebisson, A., Montana, G.: Deep neural networks for anatomical brain segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 20–28 (2015)

    Google Scholar 

  2. Brosch, T., Tam, R., Initiative, A.D.N.: Manifold learning of brain MRIs by deep learning. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, 22–26 September 2013, Proceedings, Part II 16, pp. 633–640. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-40763-5_78

  3. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in healthcare, November 2022. https://doi.org/10.48550/arXiv.2211.02701

  4. Chen, X., et al.: Recent advances and clinical applications of deep learning in medical image analysis. Med. Image Anal. 79, 102444 (2022)

    Google Scholar 

  5. Damseh, R., Delafontaine-Martel, P., Pouliot, P., Cheriet, F., Lesage, F.: Laplacian flow dynamics on geometric graphs for anatomical modeling of cerebrovascular networks. IEEE Trans. Med. Imaging 40(1), 381–394 (2020)

    Article  Google Scholar 

  6. Damseh, R., et al.: A simulation study investigating potential diffusion-based MRI signatures of microstrokes. Sci. Rep. 11(1), 14229 (2021)

    Article  MATH  Google Scholar 

  7. Gagnon, L., et al.: Quantifying the microvascular origin of BOLD-fMRI from first principles with two-photon microscopy and an oxygen-sensitive nanoprobe. J. Neurosci. 35(8), 3663–3675 (2015)

    Article  MATH  Google Scholar 

  8. Gagnon, L., Smith, A.F., Boas, D.A., Devor, A., Secomb, T.W., Sakadžić, S.: Modeling of cerebral oxygen transport based on in vivo microscopic imaging of microvascular network structure, blood flow, and oxygenation. Front. Comput. Neurosci. 10, 82 (2016)

    Article  Google Scholar 

  9. Ghafoorian, M., et al.: Non-uniform patch sampling with deep convolutional neural networks for white matter hyperintensity segmentation. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1414–1417. IEEE (2016)

    Google Scholar 

  10. Gounis, M.J., et al.: Intravascular optical coherence tomography for neurointerventional surgery. Stroke 50(1), 218–223 (2019)

    Article  Google Scholar 

  11. Guo, Y., et al.: Segmenting hippocampus from infant brains by sparse patch matching with deep-learned features. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2014: 17th International Conference, Boston, MA, USA, 14–18 September 2014, Proceedings, Part II 17, pp. 308–315. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10470-6_39

  12. Kawahara, J., et al.: BrainNetCNN: convolutional neural networks for brain networks; towards predicting neurodevelopment. Neuroimage 146, 1038–1049 (2017)

    Article  MATH  Google Scholar 

  13. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Article  MATH  Google Scholar 

  14. Nakagawa, S., Schielzeth, H.: A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013). https://doi.org/10.1111/j.2041-210x.2012.00261.x

  15. Nie, D., Zhang, H., Adeli, E., Liu, L., Shen, D.: 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. In: Ourselin, S., Joskowicz, L., Sabuncu, M., Unal, G., Wells, W. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2016: 19th International Conference, Athens, Greece, 17–21 October 2016, Proceedings, Part II 19, pp. 212–220. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_25

  16. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Pouliot, P., et al.: Magnetic resonance fingerprinting based on realistic vasculature in mice. Neuroimage 149, 436–445 (2017)

    Article  MATH  Google Scholar 

  18. Suk, H.I., Lee, S.W., Shen, D., Initiative, A.D.N., et al.: Hierarchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 569–582 (2014)

    Article  MATH  Google Scholar 

  19. Suk, H.I., Shen, D.: Deep learning-based feature representation for AD/MCI classification. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013: 16th International Conference, Nagoya, Japan, 22–26 September 2013, Proceedings, Part II 16, pp. 583–590. Springer, Cham (2013). https://doi.org/10.1007/978-3-642-40763-5_72

  20. Ughi, G.J., et al.: A neurovascular high-frequency optical coherence tomography system enables in situ cerebrovascular volumetric microscopy. Nat. Commun. 11(1), 3851 (2020)

    Article  MATH  Google Scholar 

  21. Xu, R., et al.: Optical coherence tomography in cerebrovascular disease: open up new horizons. Transl. Stroke Res. 14(2), 137–145 (2023)

    Article  MATH  Google Scholar 

  22. Yang, J., et al.: Volumetric characterization of microvasculature in ex vivo human brain samples by serial sectioning optical coherence tomography. IEEE Trans. Biomed. Eng. 69(12), 3645–3656 (2022)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafat Damseh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rustamov, J., Rustamov, Z., Badawi, N., Lesage, F., Zaki, N., Damseh, R. (2024). Learning-Based MRI Response Predictions from OCT Microvascular Models to Replace Simulation-Based Frameworks. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14859. Springer, Cham. https://doi.org/10.1007/978-3-031-66955-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66955-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66954-5

  • Online ISBN: 978-3-031-66955-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics