Skip to main content

Resolution-Invariant Medical Image Segmentation Using Fourier Neural Operators

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Challenges in medical image segmentation arise from limited labeled datasets, especially in high-resolution scenarios requiring expert annotations. To tackle this, resolution-invariant techniques become crucial, aiming to enhance details in segmentation using models trained on low-resolution images. This study advocates incorporating Fourier neural operators into neural network architectures, leveraging its unique formulation in Fourier space to solve partial differential equations and achieve efficient resolution-invariant results in medical image segmentation. The model’s effectiveness is evaluated across diverse tasks, including pericardium segmentation in low-dose computed tomography (LDCT), left atrium segmentation in mono-model magnetic resonance images (MRI), and HeLa cell segmentation in microscope images. Models trained with images of size \(64 \times 64\) are evaluated on images of sizes \(32 \times 32\) to \(256 \times 256\). The results demonstrate that Fourier neural operator models can achieve accurate and consistent segmentation on image sizes equal to or larger than in the training data, hence nicely generalizing in terms of resolution. Furthermore, we investigate the influence of training data size from 25 to 9000 images on Fourier neural operator models, and experiments show that our model can generate relatively stable segmentation results when training with only 500 images of \(64 \times 64\) pixels. Ultimately, we explore the strengths, limitations, and potential research directions regarding the role of the Fourier neural operator in enhancing the accuracy and reliability of medical image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Nirvanall/MedicalImageSegmentation_FNO.

References

  1. Zhou, S., Nie, D., Adeli, E., Yin, J., Lian, J., Shen, D.: High-resolution encoder-decoder networks for low-contrast medical image segmentation. IEEE Trans. Image Process. 29, 461–475 (2019)

    Article  MathSciNet  Google Scholar 

  2. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W., Frangi, A. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015, Proceedings, Part III 18, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

  3. Hesamian, M., Jia, W., He, X., Kennedy, P.: Deep learning techniques for medical image segmentation: achievements and challenges. J. Digit. Imaging 32, 582–596 (2019)

    Article  Google Scholar 

  4. Liu, L., Wolterink, J., Brune, C., Veldhuis, R.: Anatomy-aided deep learning for medical image segmentation: a review. Phys. Med. Biol. 66, 11TR01 (2021)

    Google Scholar 

  5. Yang, H., Wang, Z., Liu, X., Li, C., Xin, J., Wang, Z.: Deep learning in medical image super resolution: a review. In: Applied Intelligence, pp. 1–26 (2023). 10, 111-146 (2017)

    Google Scholar 

  6. Li, Z., et al.: Fourier neural operator for parametric partial differential equations. In: International Conference on Learning Representations (2021)

    Google Scholar 

  7. You, H., Zhang, Q., Ross, C., Lee, C., Yu, Y.: Learning deep implicit Fourier neural operators (IFNOs) with applications to heterogeneous material modeling. Comput. Methods Appl. Mech. Eng. 398, 115296 (2022)

    Article  MathSciNet  Google Scholar 

  8. Guan, S., Hsu, K., Chitnis, P.: Fourier neural operator networks: a fast and general solver for the photoacoustic wave equation. arXiv:2108.09374 (2021)

  9. Li, B., Wang, H., Feng, S., Yang, X., Lin, Y.: Solving seismic wave equations on variable velocity models with Fourier neural operator. IEEE Trans. Geosci. Remote Sens. 61, 1–18 (2023)

    Google Scholar 

  10. Osher, S., Sethian, J.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  Google Scholar 

  11. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  Google Scholar 

  12. Zeune, L., Dalum, G., Terstappen, L., Gils, S., Brune, C.: Multiscale segmentation via Bregman distances and nonlinear spectral analysis. SIAM J. Imaging Sci. 10, 111–146 (2017)

    Article  MathSciNet  Google Scholar 

  13. Kabri, S., Roith, T., Tenbrinck, D., Burger, M.: Resolution-invariant image classification based on Fourier Neural Operators. In: International Conference on Scale Space and Variational Methods in Computer Vision, pp. 236–249 (2023)

    Google Scholar 

  14. Wong, K., Wang, H., Syeda-Mahmood, T.: FNOSeg3D: resolution-robust 3D image segmentation with Fourier Neural Operator. In: 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), pp. 1–5 (2023)

    Google Scholar 

  15. Vonder, M., et al.: Coronary artery calcium imaging in the ROBINSCA trial: rationale, design, and technical background. Acad. Radiol. 25, 118–128 (2018)

    Article  Google Scholar 

  16. Antonelli, M., et al.: The medical segmentation decathlon. Nat. Commun. 13, 4128 (2022)

    Google Scholar 

  17. Masters, J.: HeLa cells 50 years on: the good, the bad and the ugly. Nat. Rev. Cancer 2, 315–319 (2002)

    Article  Google Scholar 

  18. Maška, M., et al.: The cell tracking challenge: 10 years of objective benchmarking. Nat. Methods 20, 1–11 (2023)

    Article  Google Scholar 

  19. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv:1606.08415 (2016)

  20. Kovachki, N., et al.: Neural operator: learning maps between function spaces with applications to PDEs. J. Mach. Learn. Res. 24, 1–97 (2023)

    MathSciNet  Google Scholar 

  21. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  22. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  23. Fedorov, A., et al.: 3D slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging 30, 1323–1341 (2012)

    Article  Google Scholar 

  24. Chen, G., Liu, X., Li, Y., Meng, Q., Chen, L.: Laplace neural operator for complex geometries. arXiv:2302.08166 (2023)

  25. Wen, G., Li, Z., Azizzadenesheli, K., Anandkumar, A., Benson, S.: U-FNO-an enhanced Fourier neural operator-based deep-learning model for multiphase flow. Adv. Water Resour. 163, 104180 (2022)

    Article  Google Scholar 

  26. Bartolucci, F., Bezenac, E., Raonic, B., Molinaro, R., Mishra, S., Alaifari, R.: Representation equivalent neural operators: a framework for alias-free operator learning. In: Thirty-Seventh Conference on Neural Information Processing Systems (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Liu .

Editor information

Editors and Affiliations

A Additional Results

A Additional Results

Additional results of the three datasets with FNO models trained with \(32 \times 32\) images are given in Table 4. Additional segmentation visualization from FNO models of the pericardium in LDCT (Fig. 6), the left atrium in MRI (Fig. 7), and HeLa cells in microscope images (Fig. 8) are given.

Table 4. Results of the three datasets with FNO models trained with \(32 \times 32\) images.
Fig. 6.
figure 6

Segmentation visualization of the pericardium in LDCT of (a) \(32 \times 32\), (b) \(64 \times 64\), (c) \(128 \times 128\), and (d) \(256 \times 256\) with FNO model trained with \(64 \times 64\) data.

Fig. 7.
figure 7

Segmentation visualization of the left atrium in MRI of (a) \(32 \times 32\), (b) \(64 \times 64\), (c) \(128 \times 128\), and (d) \(256 \times 256\) with FNO model trained with \(64 \times 64\) data.

Fig. 8.
figure 8

Segmentation visualization of the HeLa cells in microscope images of (a) \(32 \times 32\), (b) \(64 \times 64\), (c) \(128 \times 128\), and (d) \(256 \times 256\) with FNO model trained with \(64 \times 64\) data.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Veldhuis, R., Brune, C. (2024). Resolution-Invariant Medical Image Segmentation Using Fourier Neural Operators. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66958-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66957-6

  • Online ISBN: 978-3-031-66958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics