Skip to main content

Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Long COVID is characterized by persistent symptoms, particularly pulmonary impairment, which necessitates advanced imaging for accurate diagnosis. Hyperpolarised Xenon-129 MRI (XeMRI) offers a promising avenue by visualising lung ventilation, perfusion, as well as gas transfer. Integrating functional data from XeMRI with structural data from Computed Tomography (CT) is crucial for comprehensive analysis and effective treatment strategies in long COVID, requiring precise data alignment from those complementary imaging modalities. To this end, CT-MRI registration is an essential intermediate step, given the significant challenges posed by the direct alignment of CT and Xe-MRI. Therefore, we proposed an end-to-end multimodal deformable image registration method that achieves superior performance for aligning long-COVID lung CT and proton density MRI (pMRI) data. Moreover, our method incorporates a novel Multi-perspective Loss (MPL) function, enhancing state-of-the-art deep learning methods for monomodal registration by making them adaptable for multimodal tasks. The registration results achieve a Dice coefficient score of 0.913, indicating a substantial improvement over the state-of-the-art multimodal image registration techniques. Since the XeMRI and pMRI images are acquired in the same sessions and can be roughly aligned, our results facilitate subsequent registration between XeMRI and CT, thereby potentially enhancing clinical decision-making for long COVID management.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albert, M., et al.: Biological magnetic resonance imaging using laser-polarized 129Xe. Nature 370(6486), 199–201 (1994)

    Article  Google Scholar 

  2. Anas, E.R., Onsy, A., Matuszewski, B.J.: CT scan registration with 3d dense motion field estimation using LSGAN. In: Papież, B.W., Namburete, A.I.L., Yaqub, M., Noble, J.A. (eds.) MIUA 2020. CCIS, vol. 1248, pp. 195–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52791-4_16

    Chapter  Google Scholar 

  3. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C.: Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12(1), 26–41 (2008)

    Article  Google Scholar 

  4. Balakrishnan, G., Zhao, A., Sabuncu, M.R., Guttag, J., Dalca, A.V.: VoxelMorph: a learning framework for deformable medical image registration. IEEE Trans. Med. Imaging 38(8), 1788–1800 (2019)

    Article  Google Scholar 

  5. Ballering, A.V., van Zon, S.K., Olde Hartman, T.C., Rosmalen, J.G.: Persistence of somatic symptoms after Covid-19 in The Netherlands: an observational cohort study. The Lancet 400(10350), 452–461 (2022)

    Article  Google Scholar 

  6. De Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Išgum, I.: A deep learning framework for unsupervised affine and deformable image registration. Med. Image Anal. 52, 128–143 (2019)

    Article  Google Scholar 

  7. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26(3), 297–302 (1945)

    Article  Google Scholar 

  8. Ehrhardt, J., Werner, R., Schmidt-Richberg, A., Handels, H.: Statistical modeling of 4D respiratory lung motion using diffeomorphic image registration. IEEE Trans. Med. Imaging 30(2), 251–265 (2010)

    Article  Google Scholar 

  9. Grist, J.T., et al.: Lung abnormalities detected with hyperpolarized 129Xe MRI in patients with long Covid. Radiology 305(3), 709–717 (2022)

    Article  Google Scholar 

  10. Guo, C.K.: Multi-modal image registration with unsupervised deep learning. Ph.D. thesis, Massachusetts Institute of Technology (2019)

    Google Scholar 

  11. Heinrich, M.P., et al.: MIND: modality independent neighbourhood descriptor for multi-modal deformable registration. Med. Image Anal. 16(7), 1423–1435 (2012)

    Article  Google Scholar 

  12. Heinrich, M.P., Jenkinson, M., Papież, B.W., Brady, S.M., Schnabel, J.A.: Towards realtime multimodal fusion for image-guided interventions using self-similarities. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013, Part I 16. LNCS, vol. 8149, pp. 187–194. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40811-3_24

    Chapter  Google Scholar 

  13. Hermosillo, G., Chefd’Hotel, C., Faugeras, O.: Variational methods for multimodal image matching. Int. J. Comput. Vis. 50(3), 329–343 (2002)

    Article  Google Scholar 

  14. Hu, Y., et al.: Label-driven weakly-supervised learning for multimodal deformable image registration. In: 15th ISBI, pp. 1070–1074. IEEE (2018)

    Google Scholar 

  15. Hu, Y., et al.: Weakly-supervised convolutional neural networks for multimodal image registration. Med. Image Anal. 49, 1–13 (2018)

    Article  Google Scholar 

  16. Hua, R., Pozo, J.M., Taylor, Z.A., Frangi, A.F.: Multiresolution extended free-form deformations (XFFD) for non-rigid registration with discontinuous transforms. Med. Image Anal. 36, 113–122 (2017)

    Article  Google Scholar 

  17. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NIPS, vol. 28 (2015)

    Google Scholar 

  18. Maes, F., Collignon, A., Vandermeulen, D., Marchal, G., Suetens, P.: Multimodality image registration by maximization of mutual information. IEEE Trans. Med. Imaging 16(2), 187–198 (1997)

    Article  Google Scholar 

  19. Mugler, J.P., III., Altes, T.A.: Hyperpolarized 129Xe MRI of the human lung. J. Magn. Reson. Imaging 37(2), 313–331 (2013)

    Google Scholar 

  20. Papież, B.W., Heinrich, M.P., Fehrenbach, J., Risser, L., Schnabel, J.A.: An implicit sliding-motion preserving regularisation via bilateral filtering for deformable image registration. Med. Image Anal. 18(8), 1299–1311 (2014)

    Article  Google Scholar 

  21. Qin, C., Shi, B., Liao, R., Mansi, T., Rueckert, D., Kamen, A.: Unsupervised deformable registration for multi-modal images via disentangled representations. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 249–261. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_19

    Chapter  Google Scholar 

  22. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  23. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration: a survey. IEEE Trans. Med. Imaging 32(7), 1153–1190 (2013)

    Article  Google Scholar 

  24. Szmul, A., Matin, T., Gleeson, F.V., Schnabel, J.A., Grau, V., Papież, B.W.: XeMRI to CT lung image registration enhanced with personalized 4DCT-derived motion model. In: Stoyanov, D., et al. (eds.) RAMBO/BIA/TIA -2018. LNCS, vol. 11040, pp. 260–271. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00946-5_26

    Chapter  Google Scholar 

  25. Szmul, A., Matin, T., Gleeson, F.V., Schnabel, J.A., Grau, V., Papież, B.W.: Patch-based lung ventilation estimation using multi-layer supervoxels. Comput. Med. Imaging Graph. 74, 49–60 (2019)

    Article  Google Scholar 

  26. Wells, W.M., III., Viola, P., Atsumi, H., Nakajima, S., Kikinis, R.: Multi-modal volume registration by maximization of mutual information. Med. Image Anal. 1(1), 35–51 (1996)

    Google Scholar 

  27. Zhao, S., Dong, Y., Chang, E.I., Xu, Y., et al.: Recursive cascaded networks for unsupervised medical image registration. In: ICCV, pp. 10600–10610 (2019)

    Google Scholar 

  28. Zheng, J.Q., Wang, Z., Huang, B., Lim, N.H., Papież, B.W.: Residual aligner-based network (RAN): motion-separable structure for coarse-to-fine discontinuous deformable registration. Med. Image Anal. 91, 103038 (2024)

    Article  Google Scholar 

  29. Zheng, J.Q., Wang, Z., Huang, B., Vincent, T., Lim, N.H., Papież, B.W.: Recursive deformable image registration network with mutual attention. In: Yang, G., Aviles-Rivero, A., Roberts, M., SchÖnlieb, CB. (eds.) Medical Image Understanding and Analysis, MIUA 2022. LNCS, Cambridge, UK, 27–29 July 2022, vol. 13413, pp. 75–86. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-12053-4_6

Download references

Acknowledgements

This study is funded by the National Institute for Health and Care Research (NIHR) (Long Covid grant, Ref: COV-LT2-0049). The views expressed in this publication are those of the authors and not necessarily those of NIHR or The Department of Health and Social Care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiahua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Grist, J.T., Gleeson, F.V., Papież, B.W. (2024). Multimodal Deformable Image Registration for Long-COVID Analysis Based on Progressive Alignment and Multi-perspective Loss. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66958-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66957-6

  • Online ISBN: 978-3-031-66958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics