Abstract
Supervised brain MRI segmentation performance relies on test sample alignment to the training domain. This is a function of various factors outside practical control such as imaging artefacts and demographics. One way of alleviating this risk in a automated segmentation pipeline is through a pre-segmentation domain alignment test. We explore a potential solution in the form of expert models created through clustering. We use the BraTS-2023 dataset to cluster into four groups reflecting medical consensus followed by baseline specialisation. We find that while the expert performance does not significantly outperform the baseline, the ensemble of these experts does. To scrutinise the results further we examine the performance on tumour growth segmentation of the various methods and find that the non-ensemble experts perform the best in this regard. Finally, we propose an independent performance indicator which may be used to inform aleatoric uncertainty estimation. Code available at: https://github.com/bip5/ExpertModels.
This work is supported by the UKRI AIMLAC CDT, funded by grant EP/S023992/1. Additionally, we acknowledge the support of the Supercomputing Wales project and AccelerateAI, which is part-funded by the European Regional Development Fund (ERDF) via Welsh Government.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-based classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 819–826 (2013)
Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Cabezas, M., et al.: Survival prediction using ensemble tumor segmentation and transfer learning. arXiv preprint arXiv:1810.04274 (2018)
Cai, H., Qi, L., Yu, Q., Shi, Y., Gao, Y.: 3d medical image segmentation with sparse annotation via cross-teaching between 3d and 2d networks. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14222, pp. 614–624. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_59
Chen, R., Smith-Cohn, M., Cohen, A.L., Colman, H.: Glioma subclassifications and their clinical significance. Neurotherapeutics 14, 284–297 (2017)
Chen, Z., et al.: Mod-Squad: designing mixtures of experts as modular multi-task learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11828–11837 (2023)
Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)
Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: BMVC, vol. 3, p. 4 (2018)
Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22
Hu, J., Gu, X., Wang, Z., Gu, X.: Mixture of calibrated networks for domain generalization in brain tumor segmentation. Knowl.-Based Syst. 270, 110520 (2023)
Huang, W., et al.: Style projected clustering for domain generalized semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3061–3071 (2023)
Hui, H., Zhang, X., Li, F., Mei, X., Guo, Y.: A partitioning-stacking prediction fusion network based on an improved attention U-Net for stroke lesion segmentation. IEEE Access 8, 47419–47432 (2020)
Hwang, J.J., et al.: SegSort: segmentation by discriminative sorting of segments. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7334–7344 (2019)
Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)
Jetley, S., Romera-Paredes, B., Jayasumana, S., Torr, P.: Prototypical priors: from improving classification to zero-shot learning. arXiv preprint arXiv:1512.01192 (2015)
Liu, J., et al.: Adult-like phase and multi-scale assistance for isointense infant brain tissue segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14223, pp. 56–66. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_6
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Mukherjee, T., Pournik, O., Lim Choi Keung, S.N., Arvanitis, T.N.: Clinical decision support systems for brain tumour diagnosis and prognosis: a systematic review. Cancers 15(13), 3523 (2023)
Murugesan, G.K., et al.: Multidimensional and multiresolution ensemble networks for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 148–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_14
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Ou, Y., et al.: Patcher: patch transformers with mixture of experts for precise medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 475–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_46
Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161. PMLR (2015)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Rosch, E.H.: Natural categories. Cogn. Psychol. 4(3), 328–350 (1973)
Siddiquee, M.M.R., Myronenko, A.: Redundancy reduction in semantic segmentation of 3d brain tumor MRIs. arXiv preprint arXiv:2111.00742 (2021)
Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4080–4090 (2017)
Xue, Y., et al.: A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images. NeuroImage Clin. 25, 102118 (2020)
Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3474–3482 (2018)
Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)
Zeineldin, R.A., et al.: Explainability of deep neural networks for MRI analysis of brain tumors. Int. J. Comput. Assist. Radiol. Surg. 17(9), 1673–1683 (2022)
Zhou, T., Wang, W., Konukoglu, E., Van Gool, L.: Rethinking semantic segmentation: a prototype view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2582–2593 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Paudel, B., Zwiggelaar, R., Akanyeti, O. (2024). Expert Model Prediction Through Feature Matching. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_19
Download citation
DOI: https://doi.org/10.1007/978-3-031-66958-3_19
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66957-6
Online ISBN: 978-3-031-66958-3
eBook Packages: Computer ScienceComputer Science (R0)