Skip to main content

Expert Model Prediction Through Feature Matching

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Supervised brain MRI segmentation performance relies on test sample alignment to the training domain. This is a function of various factors outside practical control such as imaging artefacts and demographics. One way of alleviating this risk in a automated segmentation pipeline is through a pre-segmentation domain alignment test. We explore a potential solution in the form of expert models created through clustering. We use the BraTS-2023 dataset to cluster into four groups reflecting medical consensus followed by baseline specialisation. We find that while the expert performance does not significantly outperform the baseline, the ensemble of these experts does. To scrutinise the results further we examine the performance on tumour growth segmentation of the various methods and find that the non-ensemble experts perform the best in this regard. Finally, we propose an independent performance indicator which may be used to inform aleatoric uncertainty estimation. Code available at: https://github.com/bip5/ExpertModels.

This work is supported by the UKRI AIMLAC CDT, funded by grant EP/S023992/1. Additionally, we acknowledge the support of the Supercomputing Wales project and AccelerateAI, which is part-funded by the European Regional Development Fund (ERDF) via Welsh Government.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akata, Z., Perronnin, F., Harchaoui, Z., Schmid, C.: Label-embedding for attribute-based classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 819–826 (2013)

    Google Scholar 

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)

  3. Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)

    Article  Google Scholar 

  4. Cabezas, M., et al.: Survival prediction using ensemble tumor segmentation and transfer learning. arXiv preprint arXiv:1810.04274 (2018)

  5. Cai, H., Qi, L., Yu, Q., Shi, Y., Gao, Y.: 3d medical image segmentation with sparse annotation via cross-teaching between 3d and 2d networks. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14222, pp. 614–624. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43898-1_59

    Chapter  Google Scholar 

  6. Chen, R., Smith-Cohn, M., Cohen, A.L., Colman, H.: Glioma subclassifications and their clinical significance. Neurotherapeutics 14, 284–297 (2017)

    Article  Google Scholar 

  7. Chen, Z., et al.: Mod-Squad: designing mixtures of experts as modular multi-task learners. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11828–11837 (2023)

    Google Scholar 

  8. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  9. Dong, N., Xing, E.P.: Few-shot semantic segmentation with prototype learning. In: BMVC, vol. 3, p. 4 (2018)

    Google Scholar 

  10. Hatamizadeh, A., Nath, V., Tang, Y., Yang, D., Roth, H.R., Xu, D.: Swin UNETR: swin transformers for semantic segmentation of brain tumors in MRI images. In: Crimi, A., Bakas, S. (eds.) BrainLes 2021. LNCS, vol. 12962, pp. 272–284. Springer, Cham (2021). https://doi.org/10.1007/978-3-031-08999-2_22

    Chapter  Google Scholar 

  11. Hu, J., Gu, X., Wang, Z., Gu, X.: Mixture of calibrated networks for domain generalization in brain tumor segmentation. Knowl.-Based Syst. 270, 110520 (2023)

    Article  Google Scholar 

  12. Huang, W., et al.: Style projected clustering for domain generalized semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3061–3071 (2023)

    Google Scholar 

  13. Hui, H., Zhang, X., Li, F., Mei, X., Guo, Y.: A partitioning-stacking prediction fusion network based on an improved attention U-Net for stroke lesion segmentation. IEEE Access 8, 47419–47432 (2020)

    Article  Google Scholar 

  14. Hwang, J.J., et al.: SegSort: segmentation by discriminative sorting of segments. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7334–7344 (2019)

    Google Scholar 

  15. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  16. Jetley, S., Romera-Paredes, B., Jayasumana, S., Torr, P.: Prototypical priors: from improving classification to zero-shot learning. arXiv preprint arXiv:1512.01192 (2015)

  17. Liu, J., et al.: Adult-like phase and multi-scale assistance for isointense infant brain tissue segmentation. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14223, pp. 56–66. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43901-8_6

    Chapter  Google Scholar 

  18. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Google Scholar 

  19. Mukherjee, T., Pournik, O., Lim Choi Keung, S.N., Arvanitis, T.N.: Clinical decision support systems for brain tumour diagnosis and prognosis: a systematic review. Cancers 15(13), 3523 (2023)

    Google Scholar 

  20. Murugesan, G.K., et al.: Multidimensional and multiresolution ensemble networks for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11993, pp. 148–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46643-5_14

    Chapter  Google Scholar 

  21. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018, Part II. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  22. Ou, Y., et al.: Patcher: patch transformers with mixture of experts for precise medical image segmentation. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13435, pp. 475–484. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16443-9_46

    Chapter  Google Scholar 

  23. Romera-Paredes, B., Torr, P.: An embarrassingly simple approach to zero-shot learning. In: International Conference on Machine Learning, pp. 2152–2161. PMLR (2015)

    Google Scholar 

  24. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  25. Rosch, E.H.: Natural categories. Cogn. Psychol. 4(3), 328–350 (1973)

    Article  Google Scholar 

  26. Siddiquee, M.M.R., Myronenko, A.: Redundancy reduction in semantic segmentation of 3d brain tumor MRIs. arXiv preprint arXiv:2111.00742 (2021)

  27. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4080–4090 (2017)

    Google Scholar 

  28. Xue, Y., et al.: A multi-path 2.5 dimensional convolutional neural network system for segmenting stroke lesions in brain MRI images. NeuroImage Clin. 25, 102118 (2020)

    Google Scholar 

  29. Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3474–3482 (2018)

    Google Scholar 

  30. Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: disentangling task transfer learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)

    Google Scholar 

  31. Zeineldin, R.A., et al.: Explainability of deep neural networks for MRI analysis of brain tumors. Int. J. Comput. Assist. Radiol. Surg. 17(9), 1673–1683 (2022)

    Google Scholar 

  32. Zhou, T., Wang, W., Konukoglu, E., Van Gool, L.: Rethinking semantic segmentation: a prototype view. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2582–2593 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otar Akanyeti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paudel, B., Zwiggelaar, R., Akanyeti, O. (2024). Expert Model Prediction Through Feature Matching. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66958-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66957-6

  • Online ISBN: 978-3-031-66958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics