Abstract
Diabetic foot ulcers significantly affect patient health and healthcare costs, making an accurate diagnosis crucial. This research examines the impact of image preprocessing algorithms on accurately diagnosing and classifying diabetic foot ulcers using the ResNeXt50 classifier. We introduce new strategies for automatic detection of three conditions, i.e., out-of-focus, poor lighting conditions, and the existence of artifacts. For each condition, we identify suitable image preprocessing algorithms. Comparative analysis against baseline performance metrics revealed notable improvements with various preprocessing techniques. Canny Edge Detection notably enhanced the AUC of out-of-focus conditions, while Adaptive Histogram Equalisation and Gaussian Sharpening also showed positive outcomes for poor lighting conditions. Wavelength-based Denoising showed mixed results for artifacts. Overall, preprocessing algorithms improved diabetic foot ulcer classification performance, suggesting their potential integration into associated classification workflows. Recommendations include ongoing algorithmic evaluation and broader application in medical imaging. This study emphasises the vital role of image preprocessing in enhancing diabetic foot ulcer classification accuracy, with the potential to improve wound care and monitoring in real-world scenarios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, S., Naveed, H.: Bias adjustable activation network for imbalanced data—dabetic foot ulcer challenge 2021. In: Yap, M.H., Cassidy, B., Kendrick, C. (eds.) DFUC 2021. LNCS, vol. 13183, pp. 50–61. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94907-5_4
Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)
Armstrong, D.G., Lavery, L.A., Harkless, L.B.: Validation of a diabetic wound classification system: the contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care 21(5), 855–859 (1998)
Bansal, R., Raj, G., Choudhury, T.: Blur image detection using Laplacian operator and open-cv. In: 2016 International Conference System Modeling and Advancement in Research Trends (SMART), pp. 63–67 (2016). https://doi.org/10.1109/SYSMART.2016.7894491
Bloch, L., Brüngel, R., Friedrich, C.M.: Boosting EfficientNets ensemble performance via pseudo-labels and synthetic images by pix2pixHD for infection and ischaemia classification in diabetic foot ulcers. In: Yap, M.H., Cassidy, B., Kendrick, C. (eds.) DFUC 2021. LNCS, vol. 13183, pp. 30–49. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94907-5_3
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Cassidy, B., et al.: The DFUC 2020 dataset: analysis towards diabetic foot ulcer detection. touchREVIEWS in Endocrinology 17(1), 5 (2021)
Cavanagh, P., Attinger, C., Abbas, Z., Bal, A., Rojas, N., Xu, Z.R.: Cost of treating diabetic foot ulcers in five different countries. Diabetes Metab. Res. Rev. 28(S1), 107–111 (2012)
Dipto, I., et al.: Quantifying the effect of image similarity on diabetic foot ulcer classification, pp. 1–18 (2023). https://doi.org/10.1007/978-3-031-26354-5_1
Galdran, A., Carneiro, G., Ballester, M.A.G.: Convolutional nets versus vision transformers for diabetic foot ulcer classification. In: Yap, M.H., Cassidy, B., Kendrick, C. (eds.) DFUC 2021. LNCS, vol. 13183, pp. 21–29. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94907-5_2
Goyal, M., Reeves, N.D., Davison, A.K., Rajbhandari, S., Spragg, J., Yap, M.H.: Dfunet: convolutional neural networks for diabetic foot ulcer classification. In: IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1–12 (2018). https://doi.org/10.1109/TETCI.2018.2866254
Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_3
Meier, J., Bock, R., Michelson, G., Nyúl, L.G., Hornegger, J.: Effects of preprocessing eye fundus images on appearance based glaucoma classification. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 165–172. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74272-2_21
Rodríguez-Cristerna, A., Guerrero-Cedillo, C., Donati-Olvera, G., Gómez-Flores, W., Pereira, W.: Study of the impact of image preprocessing approaches on the segmentation and classification of breast lesions on ultrasound. In: 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–4. IEEE (2017)
Saafin, W., Schaefer, G.: Pre-processing techniques for colour digital pathology image analysis. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 551–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_48
Sorber, R., Abularrage, C.J.: Diabetic foot ulcers: epidemiology and the role of multidisciplinary care teams. In: Seminars in Vascular Surgery, vol. 34, pp. 47–53. Elsevier (2021)
Ummah, K.R., Karlita, T., Sigit, R., Yuniarno, E.M., Purnama, I.K.E., Purnomo, M.H.: Effect of image pre-processing method on convolutional neural network classification of covid-19 CT scan images. Int. J. Innov. Comput. Inf. Control 18(6), 1895–1912 (2022)
Vocaturo, E., Zumpano, E., Veltri, P.: Image pre-processing in computer vision systems for melanoma detection. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2117–2124. IEEE (2018)
Yap, M.H., Cassidy, B., Pappachan, J.M., O’Shea, C., Gillespie, D., Reeves, N.D.: Analysis towards classification of infection and ischaemia of diabetic foot ulcers. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4. IEEE (2021)
Yap, M.H., Kendrick, C., Reeves, N.D., Goyal, M., Pappachan, J.M., Cassidy, B.: Development of diabetic foot ulcer datasets: an overview. In: Diabetic Foot Ulcers Grand Challenge, pp. 1–18 (2021)
Zimmet, P.Z., Magliano, D.J., Herman, W.H., Shaw, J.E.: Diabetes: a 21st century challenge. Lancet Diabet. Endocrinol. 2(1), 56–64 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chiamaka Okafor, N., Cassidy, B., O’Shea, C., Pappachan, J.M., Yap, M.H. (2024). The Effect of Image Preprocessing Algorithms on Diabetic Foot Ulcer Classification. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-66958-3_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-66957-6
Online ISBN: 978-3-031-66958-3
eBook Packages: Computer ScienceComputer Science (R0)