Skip to main content

The Effect of Image Preprocessing Algorithms on Diabetic Foot Ulcer Classification

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Diabetic foot ulcers significantly affect patient health and healthcare costs, making an accurate diagnosis crucial. This research examines the impact of image preprocessing algorithms on accurately diagnosing and classifying diabetic foot ulcers using the ResNeXt50 classifier. We introduce new strategies for automatic detection of three conditions, i.e., out-of-focus, poor lighting conditions, and the existence of artifacts. For each condition, we identify suitable image preprocessing algorithms. Comparative analysis against baseline performance metrics revealed notable improvements with various preprocessing techniques. Canny Edge Detection notably enhanced the AUC of out-of-focus conditions, while Adaptive Histogram Equalisation and Gaussian Sharpening also showed positive outcomes for poor lighting conditions. Wavelength-based Denoising showed mixed results for artifacts. Overall, preprocessing algorithms improved diabetic foot ulcer classification performance, suggesting their potential integration into associated classification workflows. Recommendations include ongoing algorithmic evaluation and broader application in medical imaging. This study emphasises the vital role of image preprocessing in enhancing diabetic foot ulcer classification accuracy, with the potential to improve wound care and monitoring in real-world scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, S., Naveed, H.: Bias adjustable activation network for imbalanced data—dabetic foot ulcer challenge 2021. In: Yap, M.H., Cassidy, B., Kendrick, C. (eds.) DFUC 2021. LNCS, vol. 13183, pp. 50–61. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94907-5_4

  2. Alzubaidi, L., et al.: Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J. Big Data 8, 1–74 (2021)

    Google Scholar 

  3. Armstrong, D.G., Lavery, L.A., Harkless, L.B.: Validation of a diabetic wound classification system: the contribution of depth, infection, and ischemia to risk of amputation. Diabetes Care 21(5), 855–859 (1998)

    Article  Google Scholar 

  4. Bansal, R., Raj, G., Choudhury, T.: Blur image detection using Laplacian operator and open-cv. In: 2016 International Conference System Modeling and Advancement in Research Trends (SMART), pp. 63–67 (2016). https://doi.org/10.1109/SYSMART.2016.7894491

  5. Bloch, L., Brüngel, R., Friedrich, C.M.: Boosting EfficientNets ensemble performance via pseudo-labels and synthetic images by pix2pixHD for infection and ischaemia classification in diabetic foot ulcers. In: Yap, M.H., Cassidy, B., Kendrick, C. (eds.) DFUC 2021. LNCS, vol. 13183, pp. 30–49. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94907-5_3

  6. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)

    Article  Google Scholar 

  7. Cassidy, B., et al.: The DFUC 2020 dataset: analysis towards diabetic foot ulcer detection. touchREVIEWS in Endocrinology 17(1), 5 (2021)

    Google Scholar 

  8. Cavanagh, P., Attinger, C., Abbas, Z., Bal, A., Rojas, N., Xu, Z.R.: Cost of treating diabetic foot ulcers in five different countries. Diabetes Metab. Res. Rev. 28(S1), 107–111 (2012)

    Article  Google Scholar 

  9. Dipto, I., et al.: Quantifying the effect of image similarity on diabetic foot ulcer classification, pp. 1–18 (2023). https://doi.org/10.1007/978-3-031-26354-5_1

  10. Galdran, A., Carneiro, G., Ballester, M.A.G.: Convolutional nets versus vision transformers for diabetic foot ulcer classification. In: Yap, M.H., Cassidy, B., Kendrick, C. (eds.) DFUC 2021. LNCS, vol. 13183, pp. 21–29. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-94907-5_2

  11. Goyal, M., Reeves, N.D., Davison, A.K., Rajbhandari, S., Spragg, J., Yap, M.H.: Dfunet: convolutional neural networks for diabetic foot ulcer classification. In: IEEE Transactions on Emerging Topics in Computational Intelligence, pp. 1–12 (2018). https://doi.org/10.1109/TETCI.2018.2866254

  12. Köhler, R., Hirsch, M., Mohler, B., Schölkopf, B., Harmeling, S.: Recording and playback of camera shake: benchmarking blind deconvolution with a real-world database. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 27–40. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33786-4_3

  13. Meier, J., Bock, R., Michelson, G., Nyúl, L.G., Hornegger, J.: Effects of preprocessing eye fundus images on appearance based glaucoma classification. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds.) CAIP 2007. LNCS, vol. 4673, pp. 165–172. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74272-2_21

  14. Rodríguez-Cristerna, A., Guerrero-Cedillo, C., Donati-Olvera, G., Gómez-Flores, W., Pereira, W.: Study of the impact of image preprocessing approaches on the segmentation and classification of breast lesions on ultrasound. In: 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pp. 1–4. IEEE (2017)

    Google Scholar 

  15. Saafin, W., Schaefer, G.: Pre-processing techniques for colour digital pathology image analysis. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 551–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_48

  16. Sorber, R., Abularrage, C.J.: Diabetic foot ulcers: epidemiology and the role of multidisciplinary care teams. In: Seminars in Vascular Surgery, vol. 34, pp. 47–53. Elsevier (2021)

    Google Scholar 

  17. Ummah, K.R., Karlita, T., Sigit, R., Yuniarno, E.M., Purnama, I.K.E., Purnomo, M.H.: Effect of image pre-processing method on convolutional neural network classification of covid-19 CT scan images. Int. J. Innov. Comput. Inf. Control 18(6), 1895–1912 (2022)

    Google Scholar 

  18. Vocaturo, E., Zumpano, E., Veltri, P.: Image pre-processing in computer vision systems for melanoma detection. In: 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2117–2124. IEEE (2018)

    Google Scholar 

  19. Yap, M.H., Cassidy, B., Pappachan, J.M., O’Shea, C., Gillespie, D., Reeves, N.D.: Analysis towards classification of infection and ischaemia of diabetic foot ulcers. In: 2021 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), pp. 1–4. IEEE (2021)

    Google Scholar 

  20. Yap, M.H., Kendrick, C., Reeves, N.D., Goyal, M., Pappachan, J.M., Cassidy, B.: Development of diabetic foot ulcer datasets: an overview. In: Diabetic Foot Ulcers Grand Challenge, pp. 1–18 (2021)

    Google Scholar 

  21. Zimmet, P.Z., Magliano, D.J., Herman, W.H., Shaw, J.E.: Diabetes: a 21st century challenge. Lancet Diabet. Endocrinol. 2(1), 56–64 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bill Cassidy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chiamaka Okafor, N., Cassidy, B., O’Shea, C., Pappachan, J.M., Yap, M.H. (2024). The Effect of Image Preprocessing Algorithms on Diabetic Foot Ulcer Classification. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66958-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66957-6

  • Online ISBN: 978-3-031-66958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics