Skip to main content

Ultrasound Confidence Maps with Neural Implicit Representation

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Ultrasound Confidence Map (CM) is an image representation that indicates the reliability of the pixel intensity values presented within ultrasound B-mode images. Those maps are highly correlated with the probability of sound reaching specific depths. Commonly, CM is calculated based only on the B-mode images, without anatomy awareness. Without clear anatomical landmarks or contextual information, CMs might misrepresent the certainty of features detected within the ultrasound images. We propose a novel deep-learning approach for CM calculation that is specific to the anatomy and based on physical principles of echo propagation. We rely on the physics-inspired intermediate representation maps of Ultra-Nerf to compute CMs with observation-angle awareness, similar to the clinical practice. Our method outperforms other methods on downstream tasks such as shadow segmentation and compounding. Additionally, we open-source the code and a tracked ultrasound dataset to promote more research in this direction at https://github.com/MrGranddy/Redefining-Confidence-Maps.

B. Yesilkaynak and V. G. Duque—Both authors share first authorship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Anisotropy refers to the variance in visual characteristics like textures and edges depending on the direction observed.

References

  1. Patil, P., Dasgupta, B.: Role of diagnostic ultrasound in the assessment of musculoskeletal diseases. Therap. Adv. Musculoskeletal Disease 4(5), 341–355 (2012)

    Article  Google Scholar 

  2. Jang, J.K., Kim, S.Y., Yoo, I.W., Cho, Y.B., Kang, H.J., Lee, D.H.: Diagnostic performance of ultrasound attenuation imaging for assessing low-grade hepatic steatosis. Eur. Radiol. 1–8 (2022)

    Google Scholar 

  3. Wei-Ting, W., Chang, K.-V., Hsu, Y.-C., Hsu, P.-C., Ricci, V., Özçakar, L.: Artifacts in musculoskeletal ultrasonography: from physics to clinics. Diagnostics 10(9), 645 (2020)

    Article  Google Scholar 

  4. Hellier, P., Coupé, P., Meyer, P., Morandi, X., Collins, D.L.: Acoustic shadows detection, application to accurate reconstruction of 3D intraoperative ultrasound. In: 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1569–1572. IEEE (2008)

    Google Scholar 

  5. Berge, C.S., Kapoor, A., Navab, N.: Orientation-driven ultrasound compounding using uncertainty information. In: Stoyanov, D., Collins, D.L., Sakuma, I., Abolmaesumi, P., Jannin, P. (eds.) IPCAI 2014. LNCS, vol. 8498, pp. 236–245. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07521-1_25

    Chapter  Google Scholar 

  6. Wein, W., Karamalis, A., Baumgartner, A., Navab, N.: Automatic bone detection and soft tissue aware ultrasound-CT registration for computer-aided orthopedic surgery. Int. J. Comput. Assist. Radiol. Surg. 10, 971–979 (2015)

    Article  Google Scholar 

  7. Klein, T., Wells, W.M.: RF ultrasound distribution-based confidence maps. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015, Part II 18. LNCS, vol. 9350, pp. 595–602. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24571-3_71

    Chapter  Google Scholar 

  8. Duque, V.G., Zirus, L., Velikova, Y., Navab, N., Mateus, D.: Can ultrasound confidence maps predict sonographers’ labeling variability? In: Kainz, B., Noble, A., Schnabel, J., Khanal, B., Müller, J.P., Day, T. (eds.) ASMUS 2023. LNCS, vol. 14337, pp. 175–184. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-44521-7_17

    Chapter  Google Scholar 

  9. Chatelain, P., Krupa, A., Navab, N.: Confidence-driven control of an ultrasound probe. IEEE Trans. Rob. 33(6), 1410–1424 (2017)

    Article  Google Scholar 

  10. Virga, S., et al.: Automatic force-compliant robotic ultrasound screening of abdominal aortic aneurysms. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 508–513. IEEE (2016)

    Google Scholar 

  11. Meng, Q., et al.: Weakly supervised estimation of shadow confidence maps in fetal ultrasound imaging. IEEE Trans. Med. Imaging (2019)

    Google Scholar 

  12. Karamalis, A., Wein, W., Klein, T., Navab, N.: Ultrasound confidence maps using random walks. Med. Image Anal. 16(6), 1101–1112 (2012)

    Article  Google Scholar 

  13. Hung, A.L.Y., Chen, W., Galeotti, J.: Ultrasound confidence maps of intensity and structure based on directed acyclic graphs and artifact models. In: 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI), pp. 697–701. IEEE (2021)

    Google Scholar 

  14. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems, vol. 33, pp. 7462–7473 (2020)

    Google Scholar 

  15. Yeung, P.-H., et al.: Implicitvol: sensorless 3D ultrasound reconstruction with deep implicit representation. arXiv preprint arXiv:2109.12108 (2021)

  16. Alblas, D., Brune, C., Yeung, K.K., Wolterink, J.M.: Going off-grid: continuous implicit neural representations for 3d vascular modeling. In: Camara, O., et al. (eds.) STACOM 2022. LNCS, vol. 13593, pp. 79–90. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-23443-9_8

    Chapter  Google Scholar 

  17. Velikova, Y., Azampour, M.F., Simson, W., Duque, V.G., Navab, N.: Lotus: learning to optimize task-based us representations. In: Greenspan, H., et al. (eds.) MICCAI 2023. LNCS, vol. 14220, pp. 435–445. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43907-0_42

    Chapter  Google Scholar 

  18. Wysocki, M., Azampour, M.F., Eilers, C., Busam, B., Salehi, M., Navab, N.: Ultra-nerf: neural radiance fields for ultrasound imaging. In: Medical Imaging with Deep Learning, pp. 382–401. PMLR (2024)

    Google Scholar 

  19. Alsinan, A.Z., Patel, V.M., Hacihaliloglu, I.: Bone shadow segmentation from ultrasound data for orthopedic surgery using GAN. Int. J. Comput. Assist. Radiol. Surg. 15(9), 1477–1485 (2020)

    Google Scholar 

  20. Berton, F., Cheriet, F., Miron, M.-C., Laporte, C.: Segmentation of the spinous process and its acoustic shadow in vertebral ultrasound images. Comput. Biol. Med. 72, 201–211 (2016)

    Article  Google Scholar 

  21. Wysocki, M.: Neural radiance fields for ultrasound imaging. Master’s thesis, Technische Universität München (2023)

    Google Scholar 

  22. Reinke, A., et al.: Common limitations of performance metrics in biomedical image analysis. In: Medical Imaging with Deep Learning (2021)

    Google Scholar 

  23. Quader, N., Hodgson, A., Abugharbieh, R.: Confidence weighted local phase features for robust bone surface segmentation in ultrasound. In: Linguraru, M.G., et al. (eds.) CLIP 2014. LNCS, vol. 8680, pp. 76–83. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13909-8_10

    Chapter  Google Scholar 

Download references

Acknowledgments

This work supported by the European Regional Development. Fund, the Pays de la Loire region on the Connect Talent scheme (MILCOM Project) and Nantes Métropole (Convention 2017-10470). Additionally, this work is partially supported by the Bavarian Ministry of Economics, State Development, and Energy project HINAV (LSM-2303-0005).

Images were rendered using ImFusion software, version 2.36.3, from ImFusion GmbH, Munich, Germany [6].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vanessa Gonzalez Duque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yesilkaynak, V.B., Duque, V.G., Wysocki, M., Velikova, Y., Mateus, D., Navab, N. (2024). Ultrasound Confidence Maps with Neural Implicit Representation. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66958-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66957-6

  • Online ISBN: 978-3-031-66958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics