Skip to main content

Blurry Boundary Segmentation with Semantic-Aware Feature Learning

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14860))

Included in the following conference series:

  • 517 Accesses

Abstract

Encoder-decoder architectures are widely adopted for medical image segmentation tasks. These models utilize lateral skip connections to capture and fuse both semantic and resolution information in deep layers, enhancing segmentation accuracy. However, in many applications, such as images with blurry boundaries, these models often struggle to precisely locate complex boundaries and segment tiny isolated parts due to the fuzzy information passed through the skip connections from the encoder layers. To solve this challenging problem, we first analyze why simple skip connections are insufficient for accurately locating indistinct boundaries. Based on this analysis, we propose a semantic-guided encoder feature learning strategy. This strategy aims to learn high-resolution semantic encoder features, enabling more accurate localization of blurry boundaries and enhancing the network’s ability to selectively learn discriminative features. Additionally, we further propose a soft contour constraint mechanism to model the blurry boundary detection. Experimental results on real clinical datasets demonstrate that our proposed method achieves state-of-the-art segmentation accuracy, particularly in regions with blurry boundaries. Further analysis confirms that our proposed network components significantly contribute to performance improvements. Experiments on additional datasets validate the generalization ability of our proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/pytorch/pytorch.

  2. 2.

    https://github.com/ginobilinie/SemGuidedSeg.

  3. 3.

    https://promise12.grand-challenge.org/evaluation/results/.

References

  1. Guo, Y., et al.: Deformable MR prostate segmentation via deep feature learning and sparse patch matching. IEEE TMI 35, 1077–1089 (2016)

    Google Scholar 

  2. Heller, N., Dean, J., Papanikolopoulos, N.: Imperfect segmentation labels: how much do they matter? In: Stoyanov, D., et al. (eds.) LABELS/CVII/STENT -2018. LNCS, vol. 11043, pp. 112–120. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01364-6_13

    Chapter  Google Scholar 

  3. Lamme, V., et al.: Separate processing dynamics for texture elements in primary visual cortex of the macaque monkey. Cerebral Cortex 9(4), 406–413 (1999)

    Article  Google Scholar 

  4. Lee, H.J., Kim, J.U., Lee, S., Kim, H.G., Ro, Y.M.: Structure boundary preserving segmentation for medical image with ambiguous boundary. In: CVPR, pp. 4817–4826 (2020)

    Google Scholar 

  5. Litjens, G., et al.: Evaluation of prostate segmentation algorithms for MRI: the PROMISE12 challenge. Media 18(2), 359–373 (2014)

    Google Scholar 

  6. Long, J., et al.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  7. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  8. Ravishankar, H., et al.: Joint deep learning of foreground and shape for robust contextual segmentation. In: IPMI (2017)

    Google Scholar 

  9. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  10. Roy, A.G., Navab, N., Wachinger, C.: Concurrent spatial and channel ‘Squeeze & Excitation’ in fully convolutional networks. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 421–429. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_48

    Chapter  Google Scholar 

  11. Wang, J., Wei, L., Wang, L., Zhou, Q., Zhu, L., Qin, J.: Boundary-aware transformers for skin lesion segmentation. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12901, pp. 206–216. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87193-2_20

    Chapter  Google Scholar 

  12. Wu, Z., et al.: W-Net: a boundary-enhanced segmentation network for stroke lesions. Expert Syst. Appl. 230, 120637 (2023)

    Article  Google Scholar 

  13. Xu, J., Li, M., Zhu, Z.: Automatic data augmentation for 3D medical image segmentation. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12261, pp. 378–387. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59710-8_37

    Chapter  Google Scholar 

  14. Yu, L., et al.: Volumetric ConvNets with mixed residual connections for automated prostate segmentation from 3D MR images. In: AAAI (2017)

    Google Scholar 

  15. Zhou, S., et al.: High-resolution encoder-decoder networks for low-contrast medical image segmentation. TIP 29, 461–475 (2019)

    MathSciNet  Google Scholar 

  16. Zhu, Q., et al.: Boundary-weighted domain adaptive neural network for prostate MR image segmentation. arXiv preprint arXiv:1902.08128 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuyu Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiao, Q., Nie, D. (2024). Blurry Boundary Segmentation with Semantic-Aware Feature Learning. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66958-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66957-6

  • Online ISBN: 978-3-031-66958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics