Skip to main content

SA-GCN: Scale Adaptive Graph Convolutional Network for ASD Identification

  • Conference paper
  • First Online:
Medical Image Understanding and Analysis (MIUA 2024)

Abstract

Autism spectrum disorder (ASD) is a neurodevelopmental disorder marked by deficits in social communication and stereotyped behaviors. Functional magnetic resonance imaging (fMRI) can record the brain’s neural activity through detecting blood flow changes, which plays an important role in automatic ASD diagnosis. Graph convolutional network (GCN)-based methods using fMRI data and phenotypic data to construct population graphs aggregate information from different modalities and have achieved satisfactory performance. However, some existing GCNs cannot effectively integrate node features and learn topological structures from the population graph. In addition, they usually construct brain functional connectivity limited to one brain atlas, which did not consider the complementary spatial information between different atlases. To this end, we propose a scale adaptive graph convolutional network that employs adaptive multi-channel graph convolutional network (AM-GCN) for ASD diagnosis. We introduce mutual learning in two parallel AM-GCNs to integrate the complementary information from different atlases. To alleviate the over-smoothing problem, we add attention-based jumping connections into each network to reduce information loss of previous layers. We evaluate our method on the Autism Brain Imaging Data Exchange (ABIDE) and achieves 90.9% classification accuracy, which outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ktena, S.I., Parisot, S., Ferrante, E., et al.: Metric learning with spectral graph convolutions on brain connectivity networks. Neuroimage 169, 431–442 (2018)

    Article  Google Scholar 

  2. Yang, Y., Ye, C., Ma, T.: A deep connectome learning network using graph convolution for connectome-disease association study. Neural Netw. 164, 91–104 (2023)

    Article  Google Scholar 

  3. Wen, G., Cao, P., Bao, H., et al.: MVS-GCN: a prior brain structure learning-guided multi-view graph convolution network for autism spectrum disorder diagnosis. Comput. Biol. Med. 142, 105239 (2022)

    Article  Google Scholar 

  4. Shao, L., Fu, C., Chen, X.: A heterogeneous graph convolutional attention network method for classification of autism spectrum disorder. BMC Bioinform. 24(1), 363 (2023)

    Article  Google Scholar 

  5. Parisot, S., et al.: Spectral graph convolutions for population-based disease prediction. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10435, pp. 177–185. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66179-7_21

    Chapter  Google Scholar 

  6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th International Conference on Learning Representations, Toulon, France (2017)

    Google Scholar 

  7. Cosmo, L., Kazi, A., Ahmadi, S.-A., Navab, N., Bronstein, M.: Latent-graph learning for disease prediction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 643–653. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_62

    Chapter  Google Scholar 

  8. Zhang, S., Chen, X., Shen, X., et al.: A-GCL: adversarial graph contrastive learning for fMRI analysis to diagnose neurodevelopmental disorders. Med. Image Anal. (90), 102932 (2023)

    Google Scholar 

  9. Peterson, L.E.: K-nearest neighbor. Scholarpedia 4(2), 1883 (2009)

    Article  Google Scholar 

  10. Wang, Y., Long, H., Zhou, Q., et al.: PLSNet: position-aware GCN-based autism spectrum disorder diagnosis via FC learning and ROIs sifting. Comput. Biol. Med. 163, 107184 (2023)

    Article  Google Scholar 

  11. Kullback, S.: Information Theory and Statistics.Courier Corporation (1997)

    Google Scholar 

  12. Zhang, H., Song, R., Wang, L., et al.: Classification of brain disorders in rs-fMRI via local-to-global graph neural networks. IEEE Trans. Med. Imaging 42(2), 444–455 (2022)

    Article  Google Scholar 

  13. Heinsfeld, A.S., Franco, A.R., Craddock, R.C., et al.: Identification of autism spectrum disorder using deep learning and the ABIDE dataset. NeuroImage: Clin. 17, 16–23 (2018)

    Google Scholar 

  14. Wang, X., Zhu, M., Bo, D., et al.: AM-GCN: adaptive multi-channel graph convolutional networks. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1243–1253 (2020)

    Google Scholar 

  15. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  16. Dvornek, N.C., Ventola, P., Pelphrey, K.A., Duncan, J.S.: Identifying autism from resting-state fMRI using long short-term memory networks. In: Wang, Q., Shi, Y., Suk, H.-Il., Suzuki, K. (eds.) MLMI 2017. LNCS, vol. 10541, pp. 362–370. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67389-9_42

    Chapter  Google Scholar 

  17. Cao, M., Yang, M., Qin, C., et al.: Using DeepGCN to identify the autism spectrum disorder from multi-site resting-state data. Biomed. Sig. Process. Control 70, 103015 (2021)

    Article  Google Scholar 

  18. Bi, X., Wang, Y., Shu, Q., et al.: Classification of autism spectrum disorder using random support vector machine cluster. Front. Genet. 9, 331287 (2018)

    Article  Google Scholar 

  19. Kazeminejad, A., Sotero, R.C.: Topological properties of resting-state fMRI functional networks improve machine learning-based autism classification. Front. Neurosci. 12, 414728 (2018)

    Google Scholar 

  20. Zhang, Y., Xiang, T., Hospedales, T.M., et al.: Deep mutual learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4320–4328 (2018)

    Google Scholar 

  21. Di Martino, A., Yan, C.G., Li, Q., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659–667 (2014)

    Article  Google Scholar 

  22. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    Google Scholar 

  23. Huang, Y., Chung, A.C.S.: Disease prediction with edge-variational graph convolutional networks. Med. Image Anal. 77, 102375 (2022)

    Article  Google Scholar 

  24. Müller, R.A., Shih, P., Keehn, B., et al.: Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cereb. Cortex 21(10), 2233–2243 (2011)

    Article  Google Scholar 

  25. Zheng, S., et al.: Multi-modal graph learning for disease prediction. IEEE Trans. Med. Imaging 41(9), 2207–2216 (2022)

    Article  Google Scholar 

  26. Khodatars, M., Shoeibi, A., Sadeghi, D., et al.: Deep learning for neuroimaging-based diagnosis and rehabilitation of autism spectrum disorder: a review. Comput. Biol. Med. 139, 104949 (2021)

    Article  Google Scholar 

  27. Data & Statistics on Autism Spectrum Disorder (2022). https://www.cdc.gov/ncbddd/autism/data.html

  28. Li, J., Chen, Z., Zhong, Y., et al.: Appearance-based gaze estimation for ASD diagnosis. IEEE Trans. Cybern. 52(7), 6504–6517 (2022)

    Article  Google Scholar 

  29. Matthews, P.M., Jezzard, P.: Functional magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 75(1), 6–12 (2004)

    Google Scholar 

  30. Li, L., Jiang, H., Wen, G., et al.: TE-HI-GCN: an ensemble of transfer hierarchical graph convolutional networks for disorder diagnosis. Neuroinformatics 20, 353–375 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (62373280) and STI 2030—Major Projects (2021ZD0200500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, J., Jiang, C., Li, J., Ouyang, G. (2024). SA-GCN: Scale Adaptive Graph Convolutional Network for ASD Identification. In: Yap, M.H., Kendrick, C., Behera, A., Cootes, T., Zwiggelaar, R. (eds) Medical Image Understanding and Analysis. MIUA 2024. Lecture Notes in Computer Science, vol 14860. Springer, Cham. https://doi.org/10.1007/978-3-031-66958-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66958-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66957-6

  • Online ISBN: 978-3-031-66958-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics