Skip to main content

The Application of Artificial Intelligence in Diabetes Prediction: A Bibliometric Analysis

  • Conference paper
  • First Online:
Implications of Information and Digital Technologies for Development (ICT4D 2024)

Abstract

This study aimed to map the evolution and impact of artificial intelligence (AI) in diabetes prediction research from 2013 to 2023. Utilizing Scopus database records, a bibliometric analysis was conducted on documents featuring AI and diabetes prediction keywords. The analysis used the Bibliometrix and VOSviewer tools to evaluate research publication trends, author collaboration, and keyword co-occurrence in the application of AI in diabetes prediction. Data screening, focusing on specific terms in titles and abstracts, ensured the relevance of the documents. The study included diverse document types and subject areas, reflecting the field’s multidisciplinary nature. The findings revealed a significant annual growth rate of 84.86% in AI applications for diabetes prediction, with 1 498 documents from 802 sources highlighting strong scholarly interest. A peak in citation impact in 2018 marks key contributions and diverse research themes in that year. International co-authorship, notably from the USA, India, China, and Saudi Arabia, underscores extensive collaboration. Thematic analysis points to focal areas like ophthalmology in diabetes-related complications and identifies central topics and emerging trends, including the Internet of Things. The bibliometric review highlights a significant interdisciplinary expansion in AI research applied to diabetes prediction, with a marked increase in global collaborations and contributions. The study underscores the importance of AI in enhancing diabetes diagnostics and management, indicating a promising trajectory for future research, healthcare policy, and clinical practice. The evolution of AI, particularly machine learning, in diabetes prediction, demonstrates the potential for innovative solutions in managing this chronic condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wright, A.D.: What is diabetes? In: Diabetic Retinopathy: Screening to Treatment (Oxford Diabetes Library), pp. 1–6. Oxford University Press (2020)

    Google Scholar 

  2. Banday, M.Z., Sameer, A.S., Nissar, S.: Pathophysiology of diabetes: an overview. Avicenna J. Med. 10, 174–188 (2020). https://doi.org/10.4103/ajm.ajm_53_20

    Article  Google Scholar 

  3. Egan, A.M., Dinneen, S.F.: What is diabetes? Medicine 47, 1–4 (2019). https://doi.org/10.1016/j.mpmed.2018.10.002

    Article  Google Scholar 

  4. Shu, L.-Q., Sun, Y.-K., Tan, L.-H., Shu, Q., Chang, A.C.: Application of artificial intelligence in pediatrics: past, present and future. World J. Pediatr. 15, 105–108 (2019). https://doi.org/10.1007/s12519-019-00255-1

    Article  Google Scholar 

  5. Zhou, H., Xin, Y., Li, S.: A diabetes prediction model based on Boruta feature selection and ensemble learning. BMC Bioinform. 24, 224 (2023). https://doi.org/10.1186/s12859-023-05300-5

    Article  Google Scholar 

  6. Ayon, S.I., Islam, M.M.: Diabetes prediction: a deep learning approach. Int. J. Inf. Eng. Electron. Bus. 11, 21–27 (2019). https://doi.org/10.5815/ijieeb.2019.02.03

  7. Fazakis, N., Kocsis, O., Dritsas, E., Alexiou, S., Fakotakis, N., Moustakas, K.: Machine learning tools for long-term type 2 diabetes risk prediction. IEEE Access 9, 103737–103757 (2021). https://doi.org/10.1109/ACCESS.2021.3098691

    Article  Google Scholar 

  8. Sabitha, E.: Artificial intelligence approaches in diabetic prediction. Presented at the January 30 (2023)

    Google Scholar 

  9. Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., Lim, W.M.: How to conduct a bibliometric analysis: an overview and guidelines. J. Bus. Res. 133, 285–296 (2021). https://doi.org/10.1016/j.jbusres.2021.04.070

    Article  Google Scholar 

  10. Abdul, N.S., et al.: Applications of artificial intelligence in the field of oral and maxillofacial pathology: a systematic review and meta-analysis. BMC Oral Health 24, 122 (2024). https://doi.org/10.1186/s12903-023-03533-7

    Article  Google Scholar 

  11. Aria, M., Cuccurullo, C.: Bibliometrix: an R-tool for comprehensive science mapping analysis. J. Informetr. 11, 959–975 (2017). https://doi.org/10.1016/j.joi.2017.08.007

    Article  Google Scholar 

  12. van Eck, N.J., Waltman, L.: Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 84, 523–538 (2010). https://doi.org/10.1007/s11192-009-0146-3

    Article  Google Scholar 

  13. Kermany, D.S., et al.: Identifying medical diagnoses and treatable diseases by image-based deep learning. Cell 172, 1122-1131.e9 (2018). https://doi.org/10.1016/j.cell.2018.02.010

    Article  Google Scholar 

  14. AbrĂ moff, M.D., Lavin, P.T., Birch, M., Shah, N., Folk, J.C.: Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digit. Med. 1, 39 (2018). https://doi.org/10.1038/s41746-018-0040-6

    Article  Google Scholar 

  15. Ting, D.S.W., et al.: Artificial intelligence and deep learning in ophthalmology. Br. J. Ophthalmol. 103, 167–175 (2019). https://doi.org/10.1136/bjophthalmol-2018-313173

    Article  Google Scholar 

  16. Schmidt-Erfurth, U., Sadeghipour, A., Gerendas, B.S., Waldstein, S.M., Bogunović, H.: Artificial intelligence in retina. Prog. Retin. Eye Res. 67, 1–29 (2018). https://doi.org/10.1016/j.preteyeres.2018.07.004

    Article  Google Scholar 

  17. Beede, E., et al.: A human-centered evaluation of a deep learning system deployed in clinics for the detection of diabetic retinopathy. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12. ACM, New York (2020)

    Google Scholar 

  18. Reddy, G.T., et al.: Analysis of dimensionality reduction techniques on big data. IEEE Access 8, 54776–54788 (2020). https://doi.org/10.1109/ACCESS.2020.2980942

    Article  Google Scholar 

  19. Ting, D.S.W., et al.: Deep learning in ophthalmology: the technical and clinical considerations. Prog. Retin. Eye Res. 72, 100759 (2019). https://doi.org/10.1016/j.preteyeres.2019.04.003

    Article  Google Scholar 

  20. Rajalakshmi, R., Subashini, R., Anjana, R.M., Mohan, V.: Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye 32, 1138–1144 (2018). https://doi.org/10.1038/s41433-018-0064-9

    Article  Google Scholar 

  21. Li, J.-P.O., et al.: Digital technology, tele-medicine, and artificial intelligence in ophthalmology: a global perspective. Prog. Retin. Eye Res. 82, 100900 (2021). https://doi.org/10.1016/j.preteyeres.2020.100900

    Article  Google Scholar 

  22. Hasan, M., Alam, M., Das, D., Hossain, E., Hasan, M.: Diabetes prediction using ensembling of different machine learning classifiers. IEEE Access 8, 76516–76531 (2020). https://doi.org/10.1109/ACCESS.2020.2989857

    Article  Google Scholar 

  23. Michael, G., Nancy, B., Michael, D.: Healthcare financing in Singapore. http://www.bioethicscasebook.sg/backgrounder/healthcare-financing-in-singapore/

  24. Nadzar, N.M.A.M., Bakri, A., Ibrahim, R.: The study of co-occurrences index’s keywords for Malaysian publications. In: Saeed, F., Gazem, N., Mohammed, F., Busalim, A. (eds.) Recent Trends in Data Science and Soft Computing, pp. 161–172. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-99007-1_16

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tebogo Bokaba .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mbuya, E., Mokheleli, T., Bokaba, T., Ndayizigamiye, P. (2024). The Application of Artificial Intelligence in Diabetes Prediction: A Bibliometric Analysis. In: Chigona, W., Kabanda, S., Seymour, L.F. (eds) Implications of Information and Digital Technologies for Development. ICT4D 2024. IFIP Advances in Information and Communication Technology, vol 708. Springer, Cham. https://doi.org/10.1007/978-3-031-66982-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-66982-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-66981-1

  • Online ISBN: 978-3-031-66982-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics