Abstract
Fairness is an important objective throughout society. From the distribution of limited goods such as education, over hiring and payment, to taxes, legislation, and jurisprudence. Due to the increasing importance of machine learning approaches in all areas of daily life including those related to health, security, and equity, an increasing amount of research focuses on fair machine learning. In this work, we focus on the fairness of partition- and prototype-based models. The contribution of this work is twofold: 1) we develop a general framework for fair machine learning of partition-based models that does not depend on a specific fairness definition, and 2) we derive a fair version of learning vector quantization (LVQ) as a specific instantiation. We compare the resulting algorithm against other algorithms from the literature on theoretical and real-world data showing its practical relevance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Angwin, J., Larson, J., Mattu, S., Kirchner, L.: Machine bias. https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through awareness, pp. 214–226. Association for Computing Machinery, New York (2012)
European Commission and Directorate-General for Communications Networks, Content and Technology: Ethics guidelines for trustworthy AI (2019)
Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree learning. In: ICDM 2010, The 10th IEEE International Conference on Data Mining, pp. 869–874. IEEE Computer Society (2010)
Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.) ECML PKDD 2012. LNCS (LNAI), vol. 7524, pp. 35–50. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33486-3_3
Kohavi, R.: Census Income. UCI Machine Learning Repository (1996). https://doi.org/10.24432/C5GP7S
Laux, J., Wachter, S., Mittelstadt, B.: Trustworthy artificial intelligence and the European union AI act: on the conflation of trustworthiness and acceptability of risk. Regul. Gov. 18(1), 3–32 (2023)
van der Linden, J.G.M., de Weerdt, M., Demirovic, E.: Fair and optimal decision trees: a dynamic programming approach. In: NeurIPS (2022)
Lövdal, S., Biehl, M.: Improved interpretation of feature relevances: iterated relevance matrix analysis (IRMA). In: ESANN 2023 Proceedings, pp. 59–64 (Oct 2023)
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., Galstyan, A.: A survey on bias and fairness in machine learning. ACM Comput. Surv. 54(6), 1–35 (2021)
Qin, A., Suganthan, P.: A novel kernel prototype-based learning algorithm. In: Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, vol. 4, pp. 621–624 (2004)
Ranzato, F., Urban, C., Zanella, M.: Fairness-aware training of decision trees by abstract interpretation. In: CIKM 2021, Queensland, Australia, 1–5 November 2021, pp. 1508–1517. ACM (2021)
Ravfogel, S., Elazar, Y., Gonen, H., Twiton, M., Goldberg, Y.: Null it out: guarding protected attributes by iterative nullspace projection. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pp. 7237–7256. Association for Computational Linguistics (2020)
Sato, A., Yamada, K.: Generalized learning vector quantization. In: Advances in Neural Information Processing Systems 8, NIPS, Denver, CO, USA, 27–30 November 1995, pp. 423–429. MIT Press (1995)
Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Comput. 21(12), 3532–3561 (2009)
Strotherm, J., Hammer, B.: Fairness-enhancing ensemble classification in water distribution networks. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2023. LNCS, vol. 14134, pp. 119–133. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43085-5_10
Strotherm, J., Müller, A., Hammer, B., Paaßen, B.: Fairness in KI-Systemen. arXiv arXiv:2307.08486 (2023). in press at Springer, German
Villmann, T., Ravichandran, J., Villmann, A., Nebel, D., Kaden, M.: Investigation of activation functions for generalized learning vector quantization. In: Vellido, A., Gibert, K., Angulo, C., Martín Guerrero, J.D. (eds.) WSOM 2019. AISC, vol. 976, pp. 179–188. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-19642-4_18
Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 335–340. ACM (2018)
Zhang, W., Ntoutsi, E.: FAHT: an adaptive fairness-aware decision tree classifier. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI 2019, Macao, China, 10–16 August 2019, pp. 1480–1486. ijcai.org (2019)
Acknowledgments
We gratefully acknowledge funding from the European Research Council (ERC) under the ERC Synergy Grant Water-Futures (Grant agreement No. 951424).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Störck, F., Hinder, F., Brinkrolf, J., Paassen, B., Vaquet, V., Hammer, B. (2024). FairGLVQ: Fairness in Partition-Based Classification. In: Villmann, T., Kaden, M., Geweniger, T., Schleif, FM. (eds) Advances in Self-Organizing Maps, Learning Vector Quantization, Interpretable Machine Learning, and Beyond. WSOM+ 2024. Lecture Notes in Networks and Systems, vol 1087. Springer, Cham. https://doi.org/10.1007/978-3-031-67159-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-031-67159-3_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-67158-6
Online ISBN: 978-3-031-67159-3
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)