Skip to main content

Assessing the Significance of Longitudinal Data in Alzheimer’s Disease Forecasting

  • Conference paper
  • First Online:
Artificial Intelligence in Healthcare (AIiH 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14975))

Included in the following conference series:

  • 361 Accesses

Abstract

In this study, we employ a transformer encoder model to characterize the significance of longitudinal patient data for forecasting the progression of Alzheimer’s Disease (AD). Our model, Longitudinal Forecasting Model for Alzheimer’s Disease (LongForMAD), harnesses the comprehensive temporal information embedded in sequences of patient visits that incorporate multimodal data, providing a deeper understanding of disease progression than can be drawn from single-visit data alone. We present an empirical analysis across two patient groups—Cognitively Normal (CN) and Mild Cognitive Impairment (MCI)—over a span of five follow-up years. Our findings reveal that models incorporating more extended patient histories can outperform those relying solely on present information, suggesting a deeper historical context is critical in enhancing predictive accuracy for future AD progression. Our results support the incorporation of longitudinal data in clinical settings to enhance the early detection and monitoring of AD. Our code is available at https://github.com/batuhankmkaraman/LongForMAD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Altay, F., Sanchez, G.R., James, Y., Faraone, S.V., Velipasalar, S., Salekin, A.: Preclinical stage Alzheimer’s disease detection using magnetic resonance image scans. arXiv (Cornell University), November 2020. https://doi.org/10.48550/arxiv.2011.14139

  2. Campos, S., Pizarro, L., Valle, C., Gray, K.R., Rueckert, D., Allende, H.: Evaluating imputation techniques for missing data in ADNI: a patient classification study. In: Pardo, A., Kittler, J. (eds.) CIARP 2015. LNCS, vol. 9423, pp. 3–10. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25751-8_1

    Chapter  Google Scholar 

  3. Chen, Q., Hong, Y.: LongFormer: longitudinal transformer for Alzheimer’s disease classification with structural MRIs, December 2023. https://doi.org/10.48550/arXiv.2302.00901, https://arxiv.org/abs/2302.00901

  4. Chen, Y., et al.: Progression from normal cognition to mild cognitive impairment in a diverse clinic-based and community-based elderly cohort. Alzheimer’s Dement. 13, 399–405 (2017). https://doi.org/10.1016/j.jalz.2016.07.151

  5. Cui, R., Liu, M.: RNN-based longitudinal analysis for diagnosis of Alzheimer’s disease. Comput. Med. Imaging Graph. 73, 1–10 (2019). https://doi.org/10.1016/j.compmedimag.2019.01.005

  6. Fischl, B., et al.: Automatically parcellating the human cerebral cortex. Cerebral Cortex 14(1), 11–22 (2004). https://doi.org/10.1093/cercor/bhg087, http://cercor.oxfordjournals.org/content/14/1/11.abstract

  7. Fouladvand, S., Noshad, M., Periyakoil, V.J., Chen, J.H.: Machine learning prediction of mild cognitive impairment and its progression to Alzheimer’s disease. Health Sci. Rep. 6, e1438 (2023). https://doi.org/10.1002/hsr2.1438

  8. Hu, Z., Wang, Z., Jin, Y., Hou, W.: VGG-TSwinformer: transformer-based deep learning model for early Alzheimer’s disease prediction. Comput. Methods Programs Biomed. 229, 107291 (2023). https://doi.org/10.1016/j.cmpb.2022.107291

  9. Jack, C.R., et al.: Magnetic resonance imaging in Alzheimer’s disease neuroimaging initiative 2. Alzheimer’s Dement. 11, 740–756 (2015). https://doi.org/10.1016/j.jalz.2015.05.002, https://www.sciencedirect.com/science/article/pii/S1552526015001685

  10. Jarrett, D., Yoon, J., van der Schaar, M.: Dynamic prediction in clinical survival analysis using temporal convolutional networks. IEEE J. Biomed. Health Inform. 24, 424–436 (2020). https://doi.org/10.1109/jbhi.2019.2929264

  11. Karaman, B.K., Mormino, E.C., Sabuncu, M.R.: Machine learning based multi-modal prediction of future decline toward Alzheimer’s disease: an empirical study. PLOS ONE 17, e0277322 (2022). https://doi.org/10.1371/journal.pone.0277322

  12. Kingma, D., Lei Ba, J.: Adam: a method for stochastic optimization, January 2017. https://arxiv.org/pdf/1412.6980.pdf

  13. Lee, H., Kim, J., Park, E., Kim, M., Kim, T., Kooi, T.: Enhancing breast cancer risk prediction by incorporating prior images. In: Greenspan, H., et al. (eds.) Medical Image Computing and Computer Assisted Intervention – MICCAI 2023. MICCAI 2023. LNCS, vol. 14224, pp. 389–398. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43904-9_38

  14. Li, F., Liu, M.: A hybrid convolutional and recurrent neural network for hippocampus analysis in Alzheimer’s disease. J. Neurosci. Methods 323, 108–118 (2019). https://doi.org/10.1016/j.jneumeth.2019.05.006

  15. Li, Y., et al.: Discriminant analysis of longitudinal cortical thickness changes in Alzheimer’s disease using dynamic and network features. Neurobiol. Aging 33, 427.e15–427.e30 (2012). https://doi.org/10.1016/j.neurobiolaging.2010.11.008

  16. Li, Y., et al.: BEHRT: transformer for electronic health records. Sci. Rep. 10, 7155 (2020). https://doi.org/10.1038/s41598-020-62922-y

  17. ADNI|study documents. https://adni.loni.usc.edu/methods/documents/

  18. Mueller, S.G., et al.: Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s disease neuroimaging initiative (ADNI). Alzheimer’s Dement. 1, 55–66 (2005). https://doi.org/10.1016/j.jalz.2005.06.003

  19. Shen, Y., et al.: Leveraging transformers to improve breast cancer classification and risk assessment with multi-modal and longitudinal data, November 2023. https://arxiv.org/pdf/2311.03217.pdf

  20. Vaswani, A., et al.: Attention is all you need, June 2017. https://arxiv.org/abs/1706.03762

  21. Wang, X., et al.: Predicting up to 10 year breast cancer risk using longitudinal mammographic screening history. medRxiv (2023). https://doi.org/10.1101/2023.06.28.23291994, https://www.medrxiv.org/content/early/2023/06/29/2023.06.28.23291994

  22. Yuan, W., et al.: Temporal bias in case-control design: preventing reliable predictions of the future. Nat. Commun. 12, 1107 (2021). https://doi.org/10.1038/s41467-021-21390-2

  23. Zhang, D., Shen, D.: Predicting future clinical changes of MCI patients using longitudinal and multimodal biomarkers. PLoS ONE 7, e33182 (2012). https://doi.org/10.1371/journal.pone.0033182

Download references

Acknowledgments

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf This project was also funded by NIH R01AG053949, and NSF CAREER 1748377 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Batuhan K. Karaman .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no relevant competing interests.

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 170 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Karaman, B.K., Sabuncu, M.R. (2024). Assessing the Significance of Longitudinal Data in Alzheimer’s Disease Forecasting. In: Xie, X., Styles, I., Powathil, G., Ceccarelli, M. (eds) Artificial Intelligence in Healthcare. AIiH 2024. Lecture Notes in Computer Science, vol 14975. Springer, Cham. https://doi.org/10.1007/978-3-031-67278-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67278-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67277-4

  • Online ISBN: 978-3-031-67278-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics