Skip to main content

Transferable Variational Feedback Network for Vendor Generalization in Accelerated MRI

  • Conference paper
  • First Online:
Artificial Intelligence in Healthcare (AIiH 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14976))

Included in the following conference series:

  • 362 Accesses

Abstract

Magnetic Resonance Imaging (MRI) is a widely used diagnostic tool in medicine. The long acquisition time of MRI remains to be a practical concern, leading to suboptimal patient experiences. Existing deep learning models for fast MRI acquisition struggle to handle the problem of data heterogeneity due to scanners from different vendors. This study explores the transfer learning capabilities of variational deep learning architectures to address this problem. Using standard ACR protocols, we acquired 135 ACR phantom samples from GE and Siemens 3.0T MR scanners and conducted comprehensive experiments to compare the reconstruction quality of the images produced by different models. Our experiments identified vendor differences as a major challenge in the generalization of accelerated MRI. We propose a feature refinement-based transfer learning method that outperforms the baseline networks by \(\sim \)2.0 dB (PSNR), 1.8% (SSIM) for GE, and \(\sim \)3.0 dB (PSNR), 0.8% (SSIM) for SIEMENS. Furthermore, we used experience replay to address the problem of catastrophic forgetting. We established it as a robust baseline through experiments with strong results (PSNR and SSIM performance drop reduced by 25.55% and 9.5%, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AlBadawy, E.A., Saha, A., Mazurowski, M.A.: Deep learning for segmentation of brain tumors: impact of cross-institutional training and testing. Med. Phys. 45(3), 1150–1158 (2018)

    Article  Google Scholar 

  2. Chen, E.Z., Chen, T., Sun, S.: MRI image reconstruction via learning optimization using neural odes. arXiv preprint arXiv:2006.13825 (2020)

  3. Ding, P.L.K., Li, B., Chang, K.: Convex dictionary learning for single image super-resolution. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 4058–4062 (2017). https://doi.org/10.1109/ICIP.2017.8297045

  4. Ding, P.L.K., Paul, R., Patel, A., Zhou, Y., Li, B.: Variational feedback network for accelerated MRI reconstruction. ISMRM & SMRT Annual Meeting & Exhibition (2021). https://doi.org/10.13140/RG.2.2.26769.10087

  5. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ellis, R.: Leveraging Large Scale Data Sets: a Transfer Learning Approach for 7T Super Resolution. University of California, San Francisco (2021)

    Google Scholar 

  7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning, pp. 1126–1135. PMLR (2017)

    Google Scholar 

  8. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  9. Griswold, M.A., et al.: Generalized autocalibrating partially parallel acquisitions (grappa). Mag. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  10. Hammernik, K., Klatzer, T., Kobler, E., Recht, M.P., Sodickson, D.K., Pock, T., Knoll, F.: Learning a variational network for reconstruction of accelerated MRI data. Magn. Reson. Med. 79(6), 3055–3071 (2018)

    Article  Google Scholar 

  11. He, K., Girshick, R., Dollár, P.: Rethinking ImageNet pre-training. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4918–4927 (2019)

    Google Scholar 

  12. Huh, M., Agrawal, P., Efros, A.A.: What makes ImageNet good for transfer learning? arXiv preprint arXiv:1608.08614 (2016)

  13. Kolesnikov, A., et al.: Large scale learning of general visual representations for transfer. 2(8) (2019). arXiv preprint arXiv:1912.11370

  14. Kornblith, S., Shlens, J., Le, Q.V.: Do better ImageNet models transfer better? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2661–2671 (2019)

    Google Scholar 

  15. Kwon, K., Kim, D., Park, H.: A parallel MR imaging method using multilayer perceptron. Med. Phys. 44(12), 6209–6224 (2017)

    Article  Google Scholar 

  16. Liang, D., Cheng, J., Ke, Z., Ying, L.: Deep MRI reconstruction: unrolled optimization algorithms meet neural networks. arXiv preprint arXiv:1907.11711 (2019)

  17. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  18. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)

    Google Scholar 

  19. Muckley, M.J., et al.: Results of the 2020 fastMRI challenge for machine learning MR image reconstruction. IEEE Trans. Med. Imaging 40(9), 2306–2317 (2021)

    Article  Google Scholar 

  20. Ngiam, J., Peng, D., Vasudevan, V., Kornblith, S., Le, Q.V., Pang, R.: Domain adaptive transfer learning with specialist models. arXiv preprint arXiv:1811.07056 (2018)

  21. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  22. Pooch, E.H., Ballester, P.L., Barros, R.C.: Can we trust deep learning models diagnosis? The impact of domain shift in chest radiograph classification. arXiv preprint arXiv:1909.01940 (2019)

  23. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: Sense: sensitivity encoding for fast MRI. Mag. Reson. Med. Official J. Int. Soc. Magn. Reson. Med. 42(5), 952–962 (1999)

    Article  Google Scholar 

  24. Putzky, P., et al.: i-rim applied to the fastMRI challenge. arXiv preprint arXiv:1910.08952 (2019)

  25. Putzky, P., Welling, M.: Invert to learn to invert. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  26. Raghu, A., Raghu, M., Bengio, S., Vinyals, O.: Rapid learning or feature reuse? Towards understanding the effectiveness of MAML. arXiv preprint arXiv:1909.09157 (2019)

  27. Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: TransFusion: understanding transfer learning for medical imaging. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  28. Robins, A.: Catastrophic forgetting, rehearsal and pseudorehearsal. Connect. Sci. 7(2), 123–146 (1995)

    Article  Google Scholar 

  29. Roemer, P.B., Edelstein, W.A., Hayes, C.E., Souza, S.P., Mueller, O.M.: The NMR phased array. Magn. Reson. Med. 16(2), 192–225 (1990)

    Article  Google Scholar 

  30. Schlemper, J., Caballero, J., Hajnal, J.V., Price, A., Rueckert, D.: A deep cascade of convolutional neural networks for MR image reconstruction. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 647–658. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_51

    Chapter  Google Scholar 

  31. Shin, P.J., et al.: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn. Reson. Med. 72(4), 959–970 (2014)

    Article  Google Scholar 

  32. Sodickson, D.K., Manning, W.J.: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38(4), 591–603 (1997)

    Article  Google Scholar 

  33. Sriram, A., et al.: End-to-end variational networks for accelerated MRI reconstruction. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12262, pp. 64–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59713-9_7

    Chapter  Google Scholar 

  34. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  35. Wang, S., et al.: Accelerating magnetic resonance imaging via deep learning. In: Biomedical Imaging (ISBI), 2016 IEEE 13th International Symposium on, pp. 514–517. IEEE (2016)

    Google Scholar 

  36. Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: The Thrity-Seventh Asilomar Conference on Signals, Systems & Computers, 2003, vol. 2, pp. 1398–1402. IEEE (2003)

    Google Scholar 

  37. Yan, W., et al.: The domain shift problem of medical image segmentation and vendor-adaptation by Unet-GAN. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11765, pp. 623–631. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32245-8_69

    Chapter  Google Scholar 

  38. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxiang Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Paul, R. et al. (2024). Transferable Variational Feedback Network for Vendor Generalization in Accelerated MRI. In: Xie, X., Styles, I., Powathil, G., Ceccarelli, M. (eds) Artificial Intelligence in Healthcare. AIiH 2024. Lecture Notes in Computer Science, vol 14976. Springer, Cham. https://doi.org/10.1007/978-3-031-67285-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67285-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67284-2

  • Online ISBN: 978-3-031-67285-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics