Abstract
The JSM-method is a supervised classification method, used in machine learning. The JSM-method has recently been used in Triadic Concept Analysis to classify objects. In this paper, we show how Shapley value of a cooperative game with transferable utilities, can be used to give the importance or individual contribution of each attribute-condition pair of a particular object, for its classification to a particular class.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The workshops on Interpretable Machine Learning: https://sites.google.com/view/ whi2018 and https://sites.google.com/view/hill2019.
- 2.
One more important requirement is that any hypothesis should be supported by no less than two examples to ensure generalization. However, following [14], we omit this constraint.
- 3.
Rounding is up to three significant figures.
- 4.
- 5.
References
Akhmatnurov, M., Ignatov, D.I.: Context-aware recommender system based on boolean matrix factorisation. In: Yahia, S.B., Konecny, J. (eds.) Proceedings of the Twelfth International Conference on Concept Lattices and Their Applications, Clermont-Ferrand, France, 13–16 October, 2015. CEUR Workshop Proceedings, vol. 1466, pp. 99–110. CEUR-WS.org (2015). https://ceur-ws.org/Vol-1466/paper08.pdf
Alves, G., Bhargava, V., Couceiro, M., Napoli, A.: Making ML models fairer through explanations: the case of LimeOut. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020. LNCS, vol. 12602, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72610-2_1
Egurnov, D., Ignatov, D.I.: Triclustring toolbox. In: Cristea, D., Ber, F.L., Missaoui, R., Kwuida, L., Sertkaya, B. (eds.) Supplementary Proceedings of ICFCA 2019 Conference and Workshops, Frankfurt, Germany, June 25-28, 2019. CEUR Workshop Proceedings, vol. 2378, pp. 65–69. CEUR-WS.org (2019). https://ceur-ws.org/Vol-2378/shortAT7.pdf
Faigle, U., Grabisch, M., Jiménez-Losada, A., Ordóñez, M.: Games on concept lattices: Shapley value and core. Discret. Appl. Math. 198, 29–47 (2016). https://doi.org/10.1016/j.dam.2015.08.004
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magazine 17(3), 37 (1996). https://doi.org/10.1609/aimag.v17i3.1230, https://ojs.aaai.org/index.php/aimagazine/article/view/1230
Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)
Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2016). https://doi.org/10.1145/2827872, https://doi.org/10.1145/2827872
Ignatov, D.I., Kwuida, L.: Interpretable concept-based classification with Shapley values. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 90–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8_7
Ignatov, D.I., Kwuida, L.: Shapley and Banzhaf vectors of a formal concept. In: Valverde-Albacete, F.J., Trnecka, M. (eds.) Proceedings of the Fifthteenth International Conference on Concept Lattices and Their Applications, Tallinn, Estonia, June 29–July 1, 2020. CEUR Workshop Proceedings, vol. 2668, pp. 259–271. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2668/paper20.pdf
Ignatov, D.I., Zhuk, R., Konstantinova, N.: Learning hypotheses from triadic labeled data. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). vol. 2, pp. 474–480 (2014). https://doi.org/10.1109/WI-IAT.2014.136
Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS - an algorithm for mining iceberg tri-lattices. In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China, pp. 907–911. IEEE Computer Society (2006). https://doi.org/10.1109/ICDM.2006.162, https://doi.org/10.1109/ICDM.2006.162
Kolpaczki, P., Bengs, V., Muschalik, M., Hüllermeier, E.: Approximating the Shapley value without marginal contributions. In: Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, 20–27 February, 2024, Vancouver, Canada, pp. 13246–13255. AAAI Press (2024). https://doi.org/10.1609/AAAI.V38I12.29225, https://doi.org/10.1609/aaai.v38i12.29225
Kuznetsov, S.O.: Galois connections in data analysis: contributions from the soviet era and modern Russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_11
Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1), 101–115 (2007). https://doi.org/10.1007/s10472-007-9053-6
Kwuida, L., Ignatov, D.I.: On interpretability and similarity in concept-based machine learning. In: van der Aalst, W.M.P. (ed.) AIST 2020. LNCS, vol. 12602, pp. 28–54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72610-2_3
Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60161-9_27
Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43 (2018). https://doi.org/10.1145/3233231
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 4768–4777. Curran Associates Inc., Red Hook (2017)
Luo, X., Pei, J.: Applications and computation of the Shapley value in databases and machine learning. In: Barceló, P., Pi, N.S., Meliou, A., Sudarshan, S. (eds.) Companion of the 2024 International Conference on Management of Data, SIGMOD/PODS 2024, Santiago AA, Chile, 9–15 June, 2024, pp. 630–635. ACM (2024). https://doi.org/10.1145/3626246.3654680
Maafa, K., Nourine, L., Radjef, M.S.: Algorithms for computing the Shapley value of cooperative games on lattices. Discrete Appl. Math. 249, 91–105 (2018).https://doi.org/10.1016/j.dam.2018.03.022. https://www.sciencedirect.com/science/article/pii/S0166218X18301136, concept Lattices and Applications: Recent Advances and New Opportunities
Mill, J.S.: A System of Logic. Longman (1874)
Molnar, C., Casalicchio, G., Bischl, B.: Interpretable machine learning – a brief history, state-of-the-art and challenges. In: Koprinska, I., et al. (eds.) ECML PKDD 2020. CCIS, vol. 1323, pp. 417–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65965-3_28
Shapley, L.S.: A value for n-person games, contributions to the theory of games, 2, 307–317 (1953)
Strumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2013)
Acknowledgements
We would like to thank Dmitry Egurnov and Roman Nabatchikov for their help with Triclustering Toolbox experimentation. The work of the last author is an output of a research project implemented as part of the Basic Research Program at HSE University. This research was also supported in part through computational resources of HPC facilities at HSE University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Kemgne, M.W., Njionou, B.B.K., Kwuida, L., Ignatov, D.I. (2024). Shapley Values in Classification Problems with Triadic Formal Concept Analysis. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-67868-4_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-67867-7
Online ISBN: 978-3-031-67868-4
eBook Packages: Computer ScienceComputer Science (R0)