Skip to main content

Shapley Values in Classification Problems with Triadic Formal Concept Analysis

  • Conference paper
  • First Online:
Conceptual Knowledge Structures (CONCEPTS 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14914))

Included in the following conference series:

  • 234 Accesses

Abstract

The JSM-method is a supervised classification method, used in machine learning. The JSM-method has recently been used in Triadic Concept Analysis to classify objects. In this paper, we show how Shapley value of a cooperative game with transferable utilities, can be used to give the importance or individual contribution of each attribute-condition pair of a particular object, for its classification to a particular class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The workshops on Interpretable Machine Learning: https://sites.google.com/view/ whi2018 and https://sites.google.com/view/hill2019.

  2. 2.

    One more important requirement is that any hypothesis should be supported by no less than two examples to ensure generalization. However, following [14], we omit this constraint.

  3. 3.

    Rounding is up to three significant figures.

  4. 4.

    https://github.com/EgurnovD/TriclusteringToolbox.

  5. 5.

    https://github.com/dimachine/TriShap/.

References

  1. Akhmatnurov, M., Ignatov, D.I.: Context-aware recommender system based on boolean matrix factorisation. In: Yahia, S.B., Konecny, J. (eds.) Proceedings of the Twelfth International Conference on Concept Lattices and Their Applications, Clermont-Ferrand, France, 13–16 October, 2015. CEUR Workshop Proceedings, vol. 1466, pp. 99–110. CEUR-WS.org (2015). https://ceur-ws.org/Vol-1466/paper08.pdf

  2. Alves, G., Bhargava, V., Couceiro, M., Napoli, A.: Making ML models fairer through explanations: the case of LimeOut. In: van der Aalst, W.M.P., et al. (eds.) AIST 2020. LNCS, vol. 12602, pp. 3–18. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72610-2_1

    Chapter  Google Scholar 

  3. Egurnov, D., Ignatov, D.I.: Triclustring toolbox. In: Cristea, D., Ber, F.L., Missaoui, R., Kwuida, L., Sertkaya, B. (eds.) Supplementary Proceedings of ICFCA 2019 Conference and Workshops, Frankfurt, Germany, June 25-28, 2019. CEUR Workshop Proceedings, vol. 2378, pp. 65–69. CEUR-WS.org (2019). https://ceur-ws.org/Vol-2378/shortAT7.pdf

  4. Faigle, U., Grabisch, M., Jiménez-Losada, A., Ordóñez, M.: Games on concept lattices: Shapley value and core. Discret. Appl. Math. 198, 29–47 (2016). https://doi.org/10.1016/j.dam.2015.08.004

  5. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magazine 17(3), 37 (1996). https://doi.org/10.1609/aimag.v17i3.1230, https://ojs.aaai.org/index.php/aimagazine/article/view/1230

  6. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Heidelberg (1999)

    Book  Google Scholar 

  7. Harper, F.M., Konstan, J.A.: The movielens datasets: History and context. ACM Trans. Interact. Intell. Syst. 5(4), 19:1–19:19 (2016). https://doi.org/10.1145/2827872, https://doi.org/10.1145/2827872

  8. Ignatov, D.I., Kwuida, L.: Interpretable concept-based classification with Shapley values. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 90–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8_7

    Chapter  Google Scholar 

  9. Ignatov, D.I., Kwuida, L.: Shapley and Banzhaf vectors of a formal concept. In: Valverde-Albacete, F.J., Trnecka, M. (eds.) Proceedings of the Fifthteenth International Conference on Concept Lattices and Their Applications, Tallinn, Estonia, June 29–July 1, 2020. CEUR Workshop Proceedings, vol. 2668, pp. 259–271. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2668/paper20.pdf

  10. Ignatov, D.I., Zhuk, R., Konstantinova, N.: Learning hypotheses from triadic labeled data. In: 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). vol. 2, pp. 474–480 (2014). https://doi.org/10.1109/WI-IAT.2014.136

  11. Jäschke, R., Hotho, A., Schmitz, C., Ganter, B., Stumme, G.: TRIAS - an algorithm for mining iceberg tri-lattices. In: Proceedings of the 6th IEEE International Conference on Data Mining (ICDM 2006), 18-22 December 2006, Hong Kong, China, pp. 907–911. IEEE Computer Society (2006). https://doi.org/10.1109/ICDM.2006.162, https://doi.org/10.1109/ICDM.2006.162

  12. Kolpaczki, P., Bengs, V., Muschalik, M., Hüllermeier, E.: Approximating the Shapley value without marginal contributions. In: Wooldridge, M.J., Dy, J.G., Natarajan, S. (eds.) Thirty-Eighth AAAI Conference on Artificial Intelligence, AAAI 2024, Thirty-Sixth Conference on Innovative Applications of Artificial Intelligence, IAAI 2024, Fourteenth Symposium on Educational Advances in Artificial Intelligence, EAAI 2014, 20–27 February, 2024, Vancouver, Canada, pp. 13246–13255. AAAI Press (2024). https://doi.org/10.1609/AAAI.V38I12.29225, https://doi.org/10.1609/aaai.v38i12.29225

  13. Kuznetsov, S.O.: Galois connections in data analysis: contributions from the soviet era and modern Russian research. In: Ganter, B., Stumme, G., Wille, R. (eds.) Formal Concept Analysis. LNCS (LNAI), vol. 3626, pp. 196–225. Springer, Heidelberg (2005). https://doi.org/10.1007/11528784_11

    Chapter  Google Scholar 

  14. Kuznetsov, S.O.: On stability of a formal concept. Ann. Math. Artif. Intell. 49(1), 101–115 (2007). https://doi.org/10.1007/s10472-007-9053-6

  15. Kwuida, L., Ignatov, D.I.: On interpretability and similarity in concept-based machine learning. In: van der Aalst, W.M.P. (ed.) AIST 2020. LNCS, vol. 12602, pp. 28–54. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72610-2_3

    Chapter  Google Scholar 

  16. Lehmann, F., Wille, R.: A triadic approach to formal concept analysis. In: Ellis, G., Levinson, R., Rich, W., Sowa, J.F. (eds.) ICCS-ConceptStruct 1995. LNCS, vol. 954, pp. 32–43. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60161-9_27

    Chapter  Google Scholar 

  17. Lipton, Z.C.: The mythos of model interpretability. Commun. ACM 61(10), 36–43 (2018). https://doi.org/10.1145/3233231

  18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, NIPS 2017, pp. 4768–4777. Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  19. Luo, X., Pei, J.: Applications and computation of the Shapley value in databases and machine learning. In: Barceló, P., Pi, N.S., Meliou, A., Sudarshan, S. (eds.) Companion of the 2024 International Conference on Management of Data, SIGMOD/PODS 2024, Santiago AA, Chile, 9–15 June, 2024, pp. 630–635. ACM (2024). https://doi.org/10.1145/3626246.3654680

  20. Maafa, K., Nourine, L., Radjef, M.S.: Algorithms for computing the Shapley value of cooperative games on lattices. Discrete Appl. Math. 249, 91–105 (2018).https://doi.org/10.1016/j.dam.2018.03.022. https://www.sciencedirect.com/science/article/pii/S0166218X18301136, concept Lattices and Applications: Recent Advances and New Opportunities

  21. Mill, J.S.: A System of Logic. Longman (1874)

    Google Scholar 

  22. Molnar, C., Casalicchio, G., Bischl, B.: Interpretable machine learning – a brief history, state-of-the-art and challenges. In: Koprinska, I., et al. (eds.) ECML PKDD 2020. CCIS, vol. 1323, pp. 417–431. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65965-3_28

    Chapter  Google Scholar 

  23. Shapley, L.S.: A value for n-person games, contributions to the theory of games, 2, 307–317 (1953)

    Google Scholar 

  24. Strumbelj, E., Kononenko, I.: Explaining prediction models and individual predictions with feature contributions. Knowl. Inf. Syst. 41, 647–665 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Dmitry Egurnov and Roman Nabatchikov for their help with Triclustering Toolbox experimentation. The work of the last author is an output of a research project implemented as part of the Basic Research Program at HSE University. This research was also supported in part through computational resources of HPC facilities at HSE University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry I. Ignatov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kemgne, M.W., Njionou, B.B.K., Kwuida, L., Ignatov, D.I. (2024). Shapley Values in Classification Problems with Triadic Formal Concept Analysis. In: Cabrera, I.P., Ferré, S., Obiedkov, S. (eds) Conceptual Knowledge Structures. CONCEPTS 2024. Lecture Notes in Computer Science(), vol 14914. Springer, Cham. https://doi.org/10.1007/978-3-031-67868-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67868-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67867-7

  • Online ISBN: 978-3-031-67868-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics