Skip to main content

Uncertainty Quantification in Regression Neural Networks Using Likelihood-Based Belief Functions

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2024)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14909))

Included in the following conference series:

  • 225 Accesses

Abstract

We introduce a new method for quantifying prediction uncertainty in regression neural networks using evidential likelihood-based inference. The method is based on the Gaussian approximation of the likelihood function and the linearization of the network output with respect to the weights. Prediction uncertainty is described by a random fuzzy set inducing a predictive belief function. Preliminary experiments suggest that the approximations are very accurate and that the method allows for conservative uncertainty-aware predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdar, M., et al.: A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021)

    Article  Google Scholar 

  2. Couso, I., Sánchez, L.: Upper and lower probabilities induced by a fuzzy random variable. Fuzzy Sets Syst. 165(1), 1–23 (2011)

    Article  MathSciNet  Google Scholar 

  3. Denœux, T.: A \(k\)-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. 25(05), 804–813 (1995)

    Article  Google Scholar 

  4. Denœux, T.: A neural network classifier based on Dempster-Shafer theory. IEEE Trans. Syst. Man Cybern. A 30(2), 131–150 (2000)

    Article  Google Scholar 

  5. Denœux, T.: An evidential neural network model for regression based on random fuzzy numbers. In: Le Hégarat-Mascle, S., Bloch, I., Aldea, E. (eds.) BELIEF 2022. LNCS, vol. 13506, pp. 57–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17801-6_6

    Chapter  Google Scholar 

  6. Denœux, T.: Quantifying prediction uncertainty in regression using random fuzzy sets: the ENNreg model. IEEE Trans. Fuzzy Syst. 31, 3690–3699 (2023)

    Article  Google Scholar 

  7. Denœux, T.: Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. Fuzzy Sets Syst. 453, 1–36 (2023)

    Article  MathSciNet  Google Scholar 

  8. Denœux, T.: Uncertainty quantification in logistic regression using random fuzzy sets and belief functions. Int. J. Approximate Reasoning 168, 109159 (2024)

    Article  MathSciNet  Google Scholar 

  9. Denœux, T., Kanjanatarakul, O., Sriboonchitta, S.: A new evidential k-nearest neighbor rule based on contextual discounting with partially supervised learning. Int. J. Approximate Reasoning 113, 287–302 (2019)

    Article  MathSciNet  Google Scholar 

  10. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110(3), 457–506 (2021)

    Article  MathSciNet  Google Scholar 

  11. Kanjanatarakul, O., Sriboonchitta, S., Denœux, T.: Forecasting using belief functions: an application to marketing econometrics. Int. J. Approximate Reasoning 55(5), 1113–1128 (2014)

    Article  MathSciNet  Google Scholar 

  12. Kanjanatarakul, O., Sriboonchitta, S., Denœux, T.: Prediction of future observations using belief functions: a likelihood-based approach. Int. J. Approximate Reasoning 72, 71–94 (2016)

    Article  MathSciNet  Google Scholar 

  13. Nguyen, H.T.: On random sets and belief functions. J. Math. Anal. Appl. 65, 531–542 (1978)

    Article  MathSciNet  Google Scholar 

  14. Sprott, D.A.: Statistical Inference in Science. Springer, Berlin (2000). https://doi.org/10.1007/b98955

    Book  Google Scholar 

  15. Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning -I. Inf. Sci. 8, 199–249 (1975)

    Article  MathSciNet  Google Scholar 

  16. Zadeh, L.A.: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Denœux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Denœux, T. (2024). Uncertainty Quantification in Regression Neural Networks Using Likelihood-Based Belief Functions. In: Bi, Y., Jousselme, AL., Denoeux, T. (eds) Belief Functions: Theory and Applications. BELIEF 2024. Lecture Notes in Computer Science(), vol 14909. Springer, Cham. https://doi.org/10.1007/978-3-031-67977-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67977-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67976-6

  • Online ISBN: 978-3-031-67977-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics