Skip to main content

An Evidential Time-to-Event Prediction Model Based on Gaussian Random Fuzzy Numbers

  • Conference paper
  • First Online:
Belief Functions: Theory and Applications (BELIEF 2024)

Abstract

We introduce an evidential model for time-to-event prediction with censored data. In this model, uncertainty on event time is quantified by Gaussian random fuzzy numbers, a newly introduced family of random fuzzy subsets of the real line with associated belief functions, generalizing both Gaussian random variables and Gaussian possibility distributions. Our approach makes minimal assumptions about the underlying time-to-event distribution. The model is fit by minimizing a generalized negative log-likelihood function that accounts for both normal and censored data. Comparative experiments on two real-world datasets demonstrate the very good performance of our model as compared to the state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/havakv/pycox.

References

  1. Cox, D.R.: Regression models and life-tables. J. Roy. Stat. Soc.: Ser. B (Methodol.) 34(2), 187–202 (1972)

    Article  MathSciNet  Google Scholar 

  2. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38, 325–339 (1967)

    Article  MathSciNet  Google Scholar 

  3. Denœux, T.: Belief functions induced by random fuzzy sets: a general framework for representing uncertain and fuzzy evidence. Fuzzy Sets Syst. 424, 63–91 (2021)

    Article  MathSciNet  Google Scholar 

  4. Denœux, T.: An evidential neural network model for regression based on random fuzzy numbers. In: Le Hégarat-Mascle, S., Bloch, I., Aldea, E. (eds.) Belief Functions: Theory and Applications, pp. 57–66. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-17801-6_6

    Chapter  Google Scholar 

  5. Denœux, T.: Parametric families of continuous belief functions based on generalized gaussian random fuzzy numbers. Fuzzy Sets Syst. 471, 108679 (2023)

    Article  MathSciNet  Google Scholar 

  6. Denœux, T.: Quantifying prediction uncertainty in regression using random fuzzy sets: the ENNreg model. IEEE Trans. Fuzzy Syst. 31, 3690–3699 (2023)

    Article  Google Scholar 

  7. Denœux, T.: Reasoning with fuzzy and uncertain evidence using epistemic random fuzzy sets: general framework and practical models. Fuzzy Sets Syst. 453, 1–36 (2023)

    Article  MathSciNet  Google Scholar 

  8. Faraggi, D., Simon, R.: A neural network model for survival data. Stat. Med. 14(1), 73–82 (1995)

    Article  Google Scholar 

  9. Ishwaran, H., Kogalur, U.B., Blackstone, E.H., Lauer, M.S.: Random survival forests. Ann. Appl. Stat. 2(2), 841–860 (2008)

    MathSciNet  Google Scholar 

  10. Katzman, J.L., Shaham, U., Cloninger, A., Bates, J., Jiang, T., Kluger, Y.: DeepSurv: personalized treatment recommender system using a cox proportional hazards deep neural network. BMC Med. Res. Methodol. 18(1), 1–12 (2018)

    Article  Google Scholar 

  11. Kvamme, H., Borgan, Ø., Scheel, I.: Time-to-event prediction with neural networks and cox regression. J. Mach. Learn. Res. 20(129), 1–30 (2019)

    MathSciNet  Google Scholar 

  12. Lee, C., Zame, W., Yoon, J., Van Der Schaar, M.: DeepHit: a deep learning approach to survival analysis with competing risks. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  13. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University Press (1976)

    Google Scholar 

Download references

Acknowledgment

This research is supported by A*STAR, CISCO Systems (USA) Pte. Ltd, and National University of Singapore under its Cisco-NUS Accelerated Digital Economy Corporate Laboratory (Award I21001E0002) and the National Research Foundation Singapore under AI Singapore Programme (Award AISG-GC-2019-001-2B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ling Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, L., Xing, Y., Denœux, T., Feng, M. (2024). An Evidential Time-to-Event Prediction Model Based on Gaussian Random Fuzzy Numbers. In: Bi, Y., Jousselme, AL., Denoeux, T. (eds) Belief Functions: Theory and Applications. BELIEF 2024. Lecture Notes in Computer Science(), vol 14909. Springer, Cham. https://doi.org/10.1007/978-3-031-67977-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-67977-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-67976-6

  • Online ISBN: 978-3-031-67977-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics