Abstract
The LDBC Social Network Benchmark’s Interactive workload captures an OLTP scenario operating on a correlated social network graph. It consists of complex graph queries executed concurrently with a stream of updates operation. Since its initial release in 2015, the Interactive workload has become the de facto industry standard for benchmarking transactional graph data management systems. As graph systems have matured and the community’s understanding of graph processing features has evolved, we initiated the renewal of this benchmark. This paper describes the draft Interactive v2 workload with several new features: delete operations, a cheapest path-finding query, support for larger data sets, and a novel temporal parameter curation algorithm that ensures stable runtimes for path queries.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
- 3.
- 4.
Most audited Interactive v1 implementations use 48 read and 32/64 write threads.
- 5.
- 6.
For details on the optimization steps, see https://ldbcouncil.org/tags/datagen/.
- 7.
The term shortest paths refers to the problem of finding unweighted shortest paths, which can be solved with the BFS algorithm. We use cheapest paths to refer to the weighted shortest paths problem which can be solved using e.g. Dijkstra’s algorithm.
- 8.
- 9.
- 10.
- 11.
- 12.
References
Angles, R., et al.: Foundations of modern query languages for graph databases. ACM Comput. Surv. 50(5), 68:1–68:40 (2017)
Angles, R., et al.: The LDBC Social Network Benchmark. CoRR, abs/2001.02299 (2020). http://arxiv.org/abs/2001.02299
Angles, R., et al. PG-Keys: Keys for property graphs. In: SIGMOD (2021)
Boncz, P.A., et al.: TPC-H analyzed: hidden messages and lessons learned from an influential benchmark. In: TPCTC (2013)
Bonifati, A., et al.: Graph generators: state of the art and open challenges. ACM Comput. Surv. 53(2), 36:1–36:30 (2020)
Deutsch, A., et al.: Graph pattern matching in GQL and SQL/PGQ. In: SIGMOD (2022)
Erling, O., et al.: The LDBC social network benchmark: interactive workload. In: SIGMOD (2015)
Francis, N., et al.: Cypher: an evolving query language for property graphs. In: SIGMOD, pp. 1433–1445. ACM (2018)
Gray, J. (ed).: The Benchmark Handbook for Database and Transaction Systems. Morgan Kaufmann, 2nd edition (1993)
Gray, J., et al.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)
Green, A., et al.: Updating graph databases with Cypher. In: PVLDB (2019)
Gubichev, A., Boncz, P.A.: Parameter curation for benchmark queries. In: TPCTC (2014)
Lőrincz, L., Koltai, J., Győr, A.F., Takács, K.: Collapse of an online social network: burning social capital to create it? Soc. Networks 57, 43–53 (2019)
Libkin, L., Vrgoc, D.: Regular path queries on graphs with data. In: ICDT (2012)
McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 9(1), 415–444 (2001)
Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemp. Phys. 46(5), 323–351 (2005)
Püroja, D.: LDBC Social Network Benchmark Interactive v2. Master’s thesis, Universiteit van Amsterdam (2023). https://ldbcouncil.org/docs/papers/msc-thesis-david-puroja-snb-interactive-v2-2023.pdf
Raasveldt, M., Mühleisen, H.: DuckDB: an embeddable analytical database. In: SIGMOD (2019)
Roditty, L., Zwick, U.: On dynamic shortest paths problems. In: ESA, (2004)
Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., Özsu, M.T.: The ubiquity of large graphs and surprising challenges of graph processing: extended survey. The VLDB J. 29(2), 595–618 (2019). https://doi.org/10.1007/s00778-019-00548-x
Sakr, S., et al.: The Future is Big Graphs: A Community View on Graph Processing Systems. ACM, Commun (2021)
Shastri, S., et al.: Understanding and benchmarking the impact of GDPR on database systems. VLDB 13(7), 1064–1077 (2020)
Staudt, C.L., Sazonovs, A., Meyerhenke, H.: NetworKit: a tool suite for large-scale complex network analysis. Netw. Sci. 4(4), 508–530 (2016)
Szárnyas, G., et al.: The LDBC Social Network Benchmark: Business Intelligence workload. In: PVLDB (2022)
TPC. TPC Benchmark H, revision 2.18.0. pages 1–138, (2017). http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-h_v2.18.0.pdf
Ugander, J., Karrer, B., Backstrom, L., Marlow, C.: The anatomy of the Facebook social graph. CoRR abs/1111.4503 (2011). http://arxiv.org/abs/1111.4503
Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393, 440–442 (1998)
Waudby, J., et al.: Supporting dynamic graphs and temporal entity deletions in the LDBC Social Network Benchmark’s data generator. In: GRADES-NDA (2020)
Waudby, J., et al.: Towards testing ACID compliance in the LDBC Social Network Benchmark. In: TPCTC (2020)
Acknowledgements
We would like to thank our collaborators who contributed with feedback and implementations to the SNB Interactive v2 workload: Altan Birler, Arvind Shyamsundar, Benjamin A. Steer, and Dávid Szakállas. Jack Waudby was supported by the Engineering and Physical Sciences Research Council, Centre for Doctoral Training in Cloud Computing for Big Data [grant number EP/L015358/1].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Püroja, D., Waudby, J., Boncz, P., Szárnyas, G. (2024). The LDBC Social Network Benchmark Interactive Workload v2: A Transactional Graph Query Benchmark with Deep Delete Operations. In: Nambiar, R., Poess, M. (eds) Performance Evaluation and Benchmarking. TPCTC 2023. Lecture Notes in Computer Science, vol 14247. Springer, Cham. https://doi.org/10.1007/978-3-031-68031-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-031-68031-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68030-4
Online ISBN: 978-3-031-68031-1
eBook Packages: Computer ScienceComputer Science (R0)