Skip to main content

A Pre-trained Knowledge Tracing Model with Limited Data

  • Conference paper
  • First Online:
Database and Expert Systems Applications (DEXA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14910))

Included in the following conference series:

  • 449 Accesses

Abstract

Online education systems have gained increasing popularity due to their capability to fully preserve users’ learning data. This advantage enables researchers to assess learners’ mastery through their learning trajectories, thereby facilitating personalized education and support. Knowledge tracing, an effective educational aid, simulates students’ implicit knowledge states and predicts their mastery over knowledge based on their historical answer records. However, for newly developed online learning platforms, the lack of sufficient historical answer data may impede accurate prediction of students’ knowledge states, rendering existing knowledge tracing models less effective. This paper introduces the first pre-trained knowledge tracing model that leverages a substantial amount of existing data for pre-training and a smaller dataset for fine-tuning. Validated across several publicly available knowledge tracing datasets, our method demonstrates significant improvement in tracing performance on small datasets, with a maximum AUC increase of 5.07%. Beyond incorporating small datasets, our approach of pre-training the entire dataset has shown an enhanced AUC compared to the baseline, marking a novel direction in knowledge tracing research. Furthermore, the paper analyzed the outcomes of pre-training experiments with varying numbers of interactions as fine-tuning datasets, providing valuable insights for Intelligent Tutoring Systems (ITS).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://sites.google.com/site/assistmentsdata/datasets.

  2. 2.

    https://github.com/riiid/ednet.

  3. 3.

    http://pslcdatashop.web.cmu.edu/KDDCup/downloads.jsp.

  4. 4.

    https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=507.

References

  1. Abdelrahman, G., Wang, Q.: Learning data teaching strategies via knowledge tracing. Knowl.-Based Syst. 269, 110511 (2023)

    Article  Google Scholar 

  2. Anderson, J.R., Boyle, C.F., Reiser, B.J.: Intelligent tutoring systems. Science 228(4698), 456–462 (1985)

    Article  Google Scholar 

  3. Baker, R.S.J., Corbett, A.T., Aleven, V.: More accurate student modeling through contextual estimation of slip and guess probabilities in Bayesian knowledge tracing. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 406–415. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69132-7_44

    Chapter  Google Scholar 

  4. Choi, Y., et al.: Towards an appropriate query, key, and value computation for knowledge tracing. In: Proceedings of the Seventh ACM Conference on Learning@ Scale, pp. 341–344 (2020)

    Google Scholar 

  5. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap. Inter. 4, 253–278 (1994)

    Article  Google Scholar 

  6. Ghosh, A., Heffernan, N., Lan, A.S.: Context-aware attentive knowledge tracing. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2330–2339 (2020)

    Google Scholar 

  7. Liu, Z., Chen, J., Luo, W.: Recent advances on deep learning based knowledge tracing. In: Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining, pp. 1295–1296 (2023)

    Google Scholar 

  8. Nakagawa, H., Iwasawa, Y., Matsuo, Y.: Graph-based knowledge tracing: modeling student proficiency using graph neural network. In: IEEE/WIC/ACM International Conference on Web Intelligence, pp. 156–163 (2019)

    Google Scholar 

  9. Pandey, S., Karypis, G.: A self-attentive model for knowledge tracing. arXiv preprint arXiv:1907.06837 (2019)

  10. Pandey, S., Srivastava, J.: RKT: relation-aware self-attention for knowledge tracing. In: Proceedings of the 29th ACM International Conference on Information & Knowledge Management, pp. 1205–1214 (2020)

    Google Scholar 

  11. Piech, C., et al.: Deep knowledge tracing. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  12. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving language understanding by generative pre-training (2018)

    Google Scholar 

  13. Sha, L., Hong, P.: Neural knowledge tracing. In: Frasson, C., Kostopoulos, G. (eds.) BFAL 2017. LNCS, vol. 10512, pp. 108–117. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67615-9_10

    Chapter  Google Scholar 

  14. Shin, D., Shim, Y., Yu, H., Lee, S., Kim, B., Choi, Y.: SAINT+: integrating temporal features for EdNet correctness prediction. In: LAK21: 11th International Learning Analytics and Knowledge Conference, pp. 490–496 (2021)

    Google Scholar 

  15. Song, K., Tan, X., Qin, T., Lu, J., Liu, T.Y.: MASS: masked sequence to sequence pre-training for language generation. arXiv preprint arXiv:1905.02450 (2019)

  16. Song, X., Li, J., Lei, Q., Zhao, W., Chen, Y., Mian, A.: Bi-CLKT: Bi-graph contrastive learning based knowledge tracing. Knowl.-Based Syst. 241, 108274 (2022)

    Article  Google Scholar 

  17. Sonkar, S., Waters, A.E., Lan, A.S., Grimaldi, P.J., Baraniuk, R.G.: qDKT: question-centric deep knowledge tracing. arXiv preprint arXiv:2005.12442 (2020)

  18. Tato, A., Nkambou, R.: Deep knowledge tracing on skills with small datasets. In: Crossley, S., Popescu, E. (eds.) ITS 2022. LNCS, vol. 13284, pp. 123–135. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09680-8_12

    Chapter  Google Scholar 

  19. Tong, S., et al.: Structure-based knowledge tracing: an influence propagation view. In: 2020 IEEE International Conference on Data Mining (ICDM), pp. 541–550. IEEE (2020)

    Google Scholar 

  20. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  21. Villano, M.: Probabilistic student models: Bayesian belief networks and knowledge space theory. In: Frasson, C., Gauthier, G., McCalla, G.I. (eds.) ITS 1992. LNCS, vol. 608, pp. 491–498. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55606-0_58

    Chapter  Google Scholar 

  22. Weston, J., Chopra, S., Bordes, A.: Memory networks. arXiv preprint arXiv:1410.3916 (2014)

  23. Wulf, J., Blohm, I., Leimeister, J.M., Brenner, W.: Massive open online courses. Bus. Inf. Syst. Eng. 6, 111–114 (2014)

    Article  Google Scholar 

  24. Yang, H., Cheung, L.P.: Implicit heterogeneous features embedding in deep knowledge tracing. Cogn. Comput. 10, 3–14 (2018)

    Article  Google Scholar 

  25. Yang, Y., et al.: GIKT: a graph-based interaction model for knowledge tracing. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS, vol. 12457, pp. 299–315. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_18

    Chapter  Google Scholar 

  26. Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R.R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Ye, Y., Shan, Z.: HGKT: hypergraph-based knowledge tracing for learner performance prediction. In: 2023 International Joint Conference on Neural Networks (IJCNN), pp. 1–9. IEEE (2023)

    Google Scholar 

  28. Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the 26th International Conference on World Wide Web, pp. 765–774 (2017)

    Google Scholar 

  29. Zhang, L., Xiong, X., Zhao, S., Botelho, A., Heffernan, N.T.: Incorporating rich features into deep knowledge tracing. In: Proceedings of the Fourth ACM Conference on Learning@ Scale, pp. 169–172 (2017)

    Google Scholar 

  30. Zhao, J., Bhatt, S., Thille, C., Gattani, N., Zimmaro, D.: Cold start knowledge tracing with attentive neural turing machine. In: Proceedings of the Seventh ACM Conference on Learning@ Scale, pp. 333–336 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Project of Gansu (21YF5GA102, 21YF5GA006, 21ZD8RA008, 22ZD6GA029, 22YF7GA003), Gansu Key Talent Project (11256471037), the Fundamental Research Funds for the Central Universities (lzujbky-2022-ct06), Supercomputing Center of Lanzhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yue, W. et al. (2024). A Pre-trained Knowledge Tracing Model with Limited Data. In: Strauss, C., Amagasa, T., Manco, G., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Database and Expert Systems Applications. DEXA 2024. Lecture Notes in Computer Science, vol 14910. Springer, Cham. https://doi.org/10.1007/978-3-031-68309-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68309-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68308-4

  • Online ISBN: 978-3-031-68309-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics