Abstract
Traditional solar flare forecasting approaches have mostly relied on physics-based or data-driven models using solar magnetograms, treating flare predictions as a point-in-time classification problem. This approach has limitations, particularly in capturing the evolving nature of solar activity. Recognizing the limitations of traditional flare forecasting approaches, our research aims to uncover hidden relationships and the evolutionary characteristics of solar flares and their source regions. Our previously proposed Sliding Window Multivariate Time Series Forest (Slim-TSF) has shown the feasibility of usage applied on multivariate time series data. A significant aspect of this study is the comparative analysis of our updated Slim-TSF framework against the original model outcomes. Preliminary findings indicate a notable improvement, with an average increase of 5% in both the True Skill Statistic (TSS) and Heidke Skill Score (HSS). This enhancement not only underscores the effectiveness of our refined methodology but also suggests that our systematic evaluation and feature selection approach can significantly advance the predictive accuracy of solar flare forecasting models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmadzadeh, A., et al.: Challenges with extreme class-imbalance and temporal coherence: a study on solar flare data. In: 2019 IEEE International Conference on Big Data (Big Data). IEEE (2019). https://doi.org/10.1109/bigdata47090.2019.9006505
Angelini, M., Blasilli, G., Lenti, S., Santucci, G.: A visual analytics conceptual framework for explorable and steerable partial dependence analysis. IEEE Trans. Vis. Comput. Graph. 1–16 (2024). https://doi.org/10.1109/tvcg.2023.3263739
Angryk, R.A., et al.: Multivariate time series dataset for space weather data analytics. Sci. Data 7(1) (2020).https://doi.org/10.1038/s41597-020-0548-x
Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9
Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013). https://doi.org/10.1109/TPAMI.2013.72
Benz, A.O.: Flare observations. Living Rev. Solar Phys. 5 (2008). https://doi.org/10.12942/lrsp-2008-1
Bobra, M.G., Couvidat, S.: Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135 (2015). https://doi.org/10.1088/0004-637x/798/2/135
Chen, Y., Ji, A., Babajiyavar, P.A., Ahmadzadeh, A., Angryk, R.A.: On the effectiveness of imaging of time series for flare forecasting problem. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 4184–4191 (2020)
Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142–153 (2013). https://doi.org/10.1016/j.ins.2013.02.030
Georgoulis, M.K.: On our ability to predict major solar flares. In: Obridko, V., Georgieva, K., Nagovitsyn, Y. (eds.) The Sun: New Challenges. ASSSP, vol. 30, pp. 93–104. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29417-4_9
Geurts, P.: Pattern extraction for time series classification. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_10
Homayouni, H., Ghosh, S., Ray, I., Gondalia, S., Duggan, J., Kahn, M.G.: An autocorrelation-based LSTM-autoencoder for anomaly detection on time-series data. In: 2020 IEEE International Conference on Big Data (Big Data). IEEE (2020). https://doi.org/10.1109/bigdata50022.2020.9378192
Hong, J., Ji, A., Pandey, C., Aydin, B.: Beyond traditional flare forecasting: a data-driven labeling approach for high-fidelity predictions. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2023. LNCS, vol. 14148, pp. 380–385. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-39831-5_34
Ji, A., Arya, A., Kempton, D., Angryk, R., Georgoulis, M.K., Aydin, B.: A modular approach to building solar energetic particle event forecasting systems. In: 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI), pp. 106–115 (2021)
Ji, A., Aydin, B.: Active region-based flare forecasting with sliding window multivariate time series forest classifiers. In: 2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI), pp. 196–203 (2023). https://doi.org/10.1109/CogMI58952.2023.00036
Ji, A., Aydin, B.: Active region-based flare forecasting with sliding window multivariate time series forest classifiers. In: The Fourth IEEE International Conference on Cognitive Machine Intelligence. IEEE (2023)
Ji, A., Aydin, B.: Interpretable solar flare prediction with sliding window multivariate time series forests. In: 2023 IEEE International Conference on Big Data (BigData), pp. 1519–1524 (2023)
Ji, A., Aydin, B., Georgoulis, M.K., Angryk, R.: All-clear flare prediction using interval-based time series classifiers. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 4218–4225 (2020)
Karlsson, I., Papapetrou, P., Boström, H.: Generalized random Shapelet forests. Data Min. Knowl. Disc. 30(5), 1053–1085 (2016). https://doi.org/10.1007/s10618-016-0473-y
Kusano, K., Iju, T., Bamba, Y., Inoue, S.: A physics-based method that can predict imminent large solar flares. Science 369(6503), 587–591 (2020)
Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2014). https://doi.org/10.1007/s10618-014-0361-2
Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S.: catch22: CAnonical time-series CHaracteristics. Data Min. Knowl. Disc. 33(6), 1821–1852 (2019). https://doi.org/10.1007/s10618-019-00647-x
Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-Based Classification of Time-Series Data, pp. 49–61. Nova Science Publishers, Inc. (2001)
Pandey, C., Angryk, R.A., Aydin, B.: Solar flare forecasting with deep neural networks using compressed full-disk HMI magnetograms. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1725–1730 (2021)
Pandey, C., Angryk, R.A., Aydin, B.: Explaining full-disk deep learning model for solar flare prediction using attribution methods. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds.) ECML PKDD 2023. LNCS, vol. 14175, pp. 72–89. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43430-3_5
Pandey, C., Ji, A., Angryk, R.A., Aydin, B.: Towards interpretable solar flare prediction with attention-based deep neural networks (2023)
Pandey, C., Ji, A., Angryk, R.A., Georgoulis, M.K., Aydin, B.: Towards coupling full-disk and active region-based flare prediction for operational space weather forecasting. Front. Astronomy Space Sci. 9 (2022). https://doi.org/10.3389/fspas.2022.897301
Priest, E., Forbes, T.: The magnetic nature of solar flares. Astron. Astrophys. Rev. 10(4), 313–377 (2002)
Saeed, W., Omlin, C.: Explainable AI (XAI): a systematic meta-survey of current challenges and future opportunities. Knowl.-Based Syst. 263, 110273 (2023). https://doi.org/10.1016/j.knosys.2023.110273
Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978). https://doi.org/10.1109/TASSP.1978.1163055
Shibata, K., Magara, T.: Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8(1), 6 (2011)
Silva, D.F., Giusti, R., Keogh, E., Batista, G.E.A.P.A.: Speeding up similarity search under dynamic time warping by pruning unpromising alignments. Data Min. Knowl. Discov. 32(4), 988–1016 (2018). https://doi.org/10.1007/s10618-018-0557-y
Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., Abramenko, V.: Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Solar Phys. 254(1), 101–125 (2008). https://doi.org/10.1007/s11207-008-9288-3
Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Min. Knowl. Disc. 22(1–2), 149–182 (2010). https://doi.org/10.1007/s10618-010-0179-5
Acknowledgment
This work is supported in part under two grants from NSF (Award #2104004) and NASA (SWR2O2R Grant #80NSSC22K0272).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ji, A., Pandey, C., Aydin, B. (2024). Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF. In: Wrembel, R., Chiusano, S., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2024. Lecture Notes in Computer Science, vol 14912. Springer, Cham. https://doi.org/10.1007/978-3-031-68323-7_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-68323-7_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68322-0
Online ISBN: 978-3-031-68323-7
eBook Packages: Computer ScienceComputer Science (R0)