Skip to main content

Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF

  • Conference paper
  • First Online:
Big Data Analytics and Knowledge Discovery (DaWaK 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14912))

Included in the following conference series:

Abstract

Traditional solar flare forecasting approaches have mostly relied on physics-based or data-driven models using solar magnetograms, treating flare predictions as a point-in-time classification problem. This approach has limitations, particularly in capturing the evolving nature of solar activity. Recognizing the limitations of traditional flare forecasting approaches, our research aims to uncover hidden relationships and the evolutionary characteristics of solar flares and their source regions. Our previously proposed Sliding Window Multivariate Time Series Forest (Slim-TSF) has shown the feasibility of usage applied on multivariate time series data. A significant aspect of this study is the comparative analysis of our updated Slim-TSF framework against the original model outcomes. Preliminary findings indicate a notable improvement, with an average increase of 5% in both the True Skill Statistic (TSS) and Heidke Skill Score (HSS). This enhancement not only underscores the effectiveness of our refined methodology but also suggests that our systematic evaluation and feature selection approach can significantly advance the predictive accuracy of solar flare forecasting models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmadzadeh, A., et al.: Challenges with extreme class-imbalance and temporal coherence: a study on solar flare data. In: 2019 IEEE International Conference on Big Data (Big Data). IEEE (2019). https://doi.org/10.1109/bigdata47090.2019.9006505

  2. Angelini, M., Blasilli, G., Lenti, S., Santucci, G.: A visual analytics conceptual framework for explorable and steerable partial dependence analysis. IEEE Trans. Vis. Comput. Graph. 1–16 (2024). https://doi.org/10.1109/tvcg.2023.3263739

  3. Angryk, R.A., et al.: Multivariate time series dataset for space weather data analytics. Sci. Data 7(1) (2020).https://doi.org/10.1038/s41597-020-0548-x

  4. Bagnall, A., Lines, J., Bostrom, A., Large, J., Keogh, E.: The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. Data Min. Knowl. Disc. 31(3), 606–660 (2016). https://doi.org/10.1007/s10618-016-0483-9

    Article  MathSciNet  Google Scholar 

  5. Baydogan, M.G., Runger, G., Tuv, E.: A bag-of-features framework to classify time series. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2796–2802 (2013). https://doi.org/10.1109/TPAMI.2013.72

    Article  Google Scholar 

  6. Benz, A.O.: Flare observations. Living Rev. Solar Phys. 5 (2008). https://doi.org/10.12942/lrsp-2008-1

  7. Bobra, M.G., Couvidat, S.: Solar flare prediction using SDO/HMI vector magnetic field data with a machine-learning algorithm. Astrophys. J. 798(2), 135 (2015). https://doi.org/10.1088/0004-637x/798/2/135

    Article  Google Scholar 

  8. Chen, Y., Ji, A., Babajiyavar, P.A., Ahmadzadeh, A., Angryk, R.A.: On the effectiveness of imaging of time series for flare forecasting problem. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 4184–4191 (2020)

    Google Scholar 

  9. Deng, H., Runger, G., Tuv, E., Vladimir, M.: A time series forest for classification and feature extraction. Inf. Sci. 239, 142–153 (2013). https://doi.org/10.1016/j.ins.2013.02.030

    Article  MathSciNet  Google Scholar 

  10. Georgoulis, M.K.: On our ability to predict major solar flares. In: Obridko, V., Georgieva, K., Nagovitsyn, Y. (eds.) The Sun: New Challenges. ASSSP, vol. 30, pp. 93–104. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29417-4_9

    Chapter  Google Scholar 

  11. Geurts, P.: Pattern extraction for time series classification. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 115–127. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_10

    Chapter  Google Scholar 

  12. Homayouni, H., Ghosh, S., Ray, I., Gondalia, S., Duggan, J., Kahn, M.G.: An autocorrelation-based LSTM-autoencoder for anomaly detection on time-series data. In: 2020 IEEE International Conference on Big Data (Big Data). IEEE (2020). https://doi.org/10.1109/bigdata50022.2020.9378192

  13. Hong, J., Ji, A., Pandey, C., Aydin, B.: Beyond traditional flare forecasting: a data-driven labeling approach for high-fidelity predictions. In: Wrembel, R., Gamper, J., Kotsis, G., Tjoa, A.M., Khalil, I. (eds.) DaWaK 2023. LNCS, vol. 14148, pp. 380–385. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-39831-5_34

    Chapter  Google Scholar 

  14. Ji, A., Arya, A., Kempton, D., Angryk, R., Georgoulis, M.K., Aydin, B.: A modular approach to building solar energetic particle event forecasting systems. In: 2021 IEEE Third International Conference on Cognitive Machine Intelligence (CogMI), pp. 106–115 (2021)

    Google Scholar 

  15. Ji, A., Aydin, B.: Active region-based flare forecasting with sliding window multivariate time series forest classifiers. In: 2023 IEEE 5th International Conference on Cognitive Machine Intelligence (CogMI), pp. 196–203 (2023). https://doi.org/10.1109/CogMI58952.2023.00036

  16. Ji, A., Aydin, B.: Active region-based flare forecasting with sliding window multivariate time series forest classifiers. In: The Fourth IEEE International Conference on Cognitive Machine Intelligence. IEEE (2023)

    Google Scholar 

  17. Ji, A., Aydin, B.: Interpretable solar flare prediction with sliding window multivariate time series forests. In: 2023 IEEE International Conference on Big Data (BigData), pp. 1519–1524 (2023)

    Google Scholar 

  18. Ji, A., Aydin, B., Georgoulis, M.K., Angryk, R.: All-clear flare prediction using interval-based time series classifiers. In: 2020 IEEE International Conference on Big Data (Big Data), pp. 4218–4225 (2020)

    Google Scholar 

  19. Karlsson, I., Papapetrou, P., Boström, H.: Generalized random Shapelet forests. Data Min. Knowl. Disc. 30(5), 1053–1085 (2016). https://doi.org/10.1007/s10618-016-0473-y

    Article  MathSciNet  Google Scholar 

  20. Kusano, K., Iju, T., Bamba, Y., Inoue, S.: A physics-based method that can predict imminent large solar flares. Science 369(6503), 587–591 (2020)

    Article  MathSciNet  Google Scholar 

  21. Lines, J., Bagnall, A.: Time series classification with ensembles of elastic distance measures. Data Min. Knowl. Disc. 29(3), 565–592 (2014). https://doi.org/10.1007/s10618-014-0361-2

    Article  MathSciNet  Google Scholar 

  22. Lubba, C.H., Sethi, S.S., Knaute, P., Schultz, S.R., Fulcher, B.D., Jones, N.S.: catch22: CAnonical time-series CHaracteristics. Data Min. Knowl. Disc. 33(6), 1821–1852 (2019). https://doi.org/10.1007/s10618-019-00647-x

    Article  Google Scholar 

  23. Nanopoulos, A., Alcock, R., Manolopoulos, Y.: Feature-Based Classification of Time-Series Data, pp. 49–61. Nova Science Publishers, Inc. (2001)

    Google Scholar 

  24. Pandey, C., Angryk, R.A., Aydin, B.: Solar flare forecasting with deep neural networks using compressed full-disk HMI magnetograms. In: 2021 IEEE International Conference on Big Data (Big Data), pp. 1725–1730 (2021)

    Google Scholar 

  25. Pandey, C., Angryk, R.A., Aydin, B.: Explaining full-disk deep learning model for solar flare prediction using attribution methods. In: De Francisci Morales, G., Perlich, C., Ruchansky, N., Kourtellis, N., Baralis, E., Bonchi, F. (eds.) ECML PKDD 2023. LNCS, vol. 14175, pp. 72–89. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-43430-3_5

    Chapter  Google Scholar 

  26. Pandey, C., Ji, A., Angryk, R.A., Aydin, B.: Towards interpretable solar flare prediction with attention-based deep neural networks (2023)

    Google Scholar 

  27. Pandey, C., Ji, A., Angryk, R.A., Georgoulis, M.K., Aydin, B.: Towards coupling full-disk and active region-based flare prediction for operational space weather forecasting. Front. Astronomy Space Sci. 9 (2022). https://doi.org/10.3389/fspas.2022.897301

  28. Priest, E., Forbes, T.: The magnetic nature of solar flares. Astron. Astrophys. Rev. 10(4), 313–377 (2002)

    Article  Google Scholar 

  29. Saeed, W., Omlin, C.: Explainable AI (XAI): a systematic meta-survey of current challenges and future opportunities. Knowl.-Based Syst. 263, 110273 (2023). https://doi.org/10.1016/j.knosys.2023.110273

  30. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978). https://doi.org/10.1109/TASSP.1978.1163055

    Article  Google Scholar 

  31. Shibata, K., Magara, T.: Solar flares: magnetohydrodynamic processes. Living Rev. Sol. Phys. 8(1), 6 (2011)

    Article  Google Scholar 

  32. Silva, D.F., Giusti, R., Keogh, E., Batista, G.E.A.P.A.: Speeding up similarity search under dynamic time warping by pruning unpromising alignments. Data Min. Knowl. Discov. 32(4), 988–1016 (2018). https://doi.org/10.1007/s10618-018-0557-y

  33. Song, H., Tan, C., Jing, J., Wang, H., Yurchyshyn, V., Abramenko, V.: Statistical assessment of photospheric magnetic features in imminent solar flare predictions. Solar Phys. 254(1), 101–125 (2008). https://doi.org/10.1007/s11207-008-9288-3

    Article  Google Scholar 

  34. Ye, L., Keogh, E.: Time series shapelets: a novel technique that allows accurate, interpretable and fast classification. Data Min. Knowl. Disc. 22(1–2), 149–182 (2010). https://doi.org/10.1007/s10618-010-0179-5

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work is supported in part under two grants from NSF (Award #2104004) and NASA (SWR2O2R Grant #80NSSC22K0272).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anli Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, A., Pandey, C., Aydin, B. (2024). Towards Hybrid Embedded Feature Selection and Classification Approach with Slim-TSF. In: Wrembel, R., Chiusano, S., Kotsis, G., Tjoa, A.M., Khalil, I. (eds) Big Data Analytics and Knowledge Discovery. DaWaK 2024. Lecture Notes in Computer Science, vol 14912. Springer, Cham. https://doi.org/10.1007/978-3-031-68323-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68323-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68322-0

  • Online ISBN: 978-3-031-68323-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics