Skip to main content

Generic MitM Attack Frameworks on Sponge Constructions

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2024 (CRYPTO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14923))

Included in the following conference series:

  • 1127 Accesses

Abstract

This paper proposes general meet-in-the-middle (MitM) attack frameworks for preimage and collision attacks on hash functions based on (generalized) sponge construction. As the first contribution, our MitM preimage attack framework covers a wide range of sponge-based hash functions, especially those with lower claimed security level for preimage compared to their output size. Those hash functions have been very widely standardized (e.g., Ascon-Hash, PHOTON, etc.), but are rarely studied against preimage attacks. Even the recent MitM attack framework on sponge construction by Qin et al. (EUROCRYPT 2023) cannot attack those hash functions. As the second contribution, our MitM collision attack framework shows a different tool for the collision cryptanalysis on sponge construction, while previous collision attacks on sponge construction are mainly based on differential attacks. Most of the results in this paper are the first third-party cryptanalysis results. If cryptanalysis previously existed, our new results significantly improve the previous results, such as improving the previous 2-round collision attack on Ascon-Hash to the current 4 rounds, improving the previous 3.5-round quantum preimage attack on \(\text {SPHINCS}^+\)-Haraka to our 4-round classical preimage attack, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aagaard, M., AlTawy, R., Gong, G., Mandal, K., Rohit, R.: ACE: an authenticated encryption and hash algorithm. Submission to NIST-LWC (announced as round 2 candidate on August 30, 2019) (2019)

    Google Scholar 

  2. Aoki, K., Sasaki, Yu.: Preimage attacks on one-block MD4, 63-step MD5 and more. In: Avanzi, R.M., Keliher, L., Sica, F. (eds.) SAC 2008. LNCS, vol. 5381, pp. 103–119. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04159-4_7

    Chapter  Google Scholar 

  3. Bao, Z., et al.: Automatic search of meet-in-the-middle preimage attacks on AES-like hashing. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 771–804. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_27

    Chapter  Google Scholar 

  4. Bao, Z., Guo, J., Shi, D., Tu, Y.: Superposition Meet-in-the-Middle Attacks: Updates on Fundamental Security of AES-like Hashing. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 64–93. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15802-5_3

    Chapter  Google Scholar 

  5. Beierle, C., et al.: Schwaemm and Esch: lightweight authenticated encryption and hashing using the Sparkle permutation family. NIST Lightweight Cryptography (2019)

    Google Scholar 

  6. Bernstein, D.J., et al.: SPHINCS+: submission to the NIST post-quantum project (2017)

    Google Scholar 

  7. Bernstein, D.J., et al.: Gimli. Submission to the NIST Lightweight Cryptography project (2019). https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/round-1/spec-doc/gimli-spec.pdf

  8. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak sponge function family main document. Submission NIST 3(30), 320–337 (2009)

    Google Scholar 

  9. Bogdanov, A., Khovratovich, D., Rechberger, C.: Biclique cryptanalysis of the full AES. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 344–371. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_19

    Chapter  Google Scholar 

  10. Bogdanov, A., Knežević, M., Leander, G., Toz, D., Varıcı, K., Verbauwhede, I.: spongent: a lightweight hash function. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 312–325. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_21

    Chapter  Google Scholar 

  11. Bogdanov, A., Rechberger, C.: A 3-subset meet-in-the-middle attack: cryptanalysis of the lightweight block cipher KTANTAN. In: Biryukov, A., Gong, G., Stinson, D.R. (eds.) SAC 2010. LNCS, vol. 6544, pp. 229–240. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19574-7_16

    Chapter  Google Scholar 

  12. Bouillaguet, C., Derbez, P., Fouque, P.-A.: Automatic search of attacks on round-reduced AES and applications. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 169–187. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_10

    Chapter  Google Scholar 

  13. Boura, C., David, N., Derbez, P., Leander, G., Naya-Plasencia, M.: Differential meet-in-the-middle cryptanalysis. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part III. LNCS, vol. 14083, pp. 240–272. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38548-3_9

    Chapter  Google Scholar 

  14. Canteaut, A., Naya-Plasencia, M., Vayssière, B.: Sieve-in-the-middle: improved MITM attacks. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part I. LNCS, vol. 8042, pp. 222–240. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_13

    Chapter  Google Scholar 

  15. Daemen, J., Hoffert, S., Peeters, M., Van Assche, G., Van Keer, R.: Xoodyak, a lightweight cryptographic scheme. IACR Trans. Symmetric Cryptol. 2020(S1), 60–87 (2020)

    Article  Google Scholar 

  16. Daemen, J., Massolino, P.M.C., Mehrdad, A., Rotella, Y.: The subterranean 2.0 cipher suite. IACR Trans. Symmetric Cryptol. 2020(S1), 262–294 (2020)

    Article  Google Scholar 

  17. Damgård, I.B.: A design principle for hash functions. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 416–427. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_39

    Chapter  Google Scholar 

  18. Degré, M., Derbez, P., Lahaye, L., Schrottenloher, A.: New models for the cryptanalysis of ASCON. IACR Cryptol. ePrint Arch., p. 298 (2024)

    Google Scholar 

  19. Derbez, P., Fouque, P.-A.: Automatic search of meet-in-the-middle and impossible differential attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part II. LNCS, vol. 9815, pp. 157–184. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_6

    Chapter  Google Scholar 

  20. Diffie, W., Hellman, M.E.: Special feature exhaustive cryptanalysis of the NBS data encryption standard. Computer 10(6), 74–84 (1977)

    Article  Google Scholar 

  21. Dinur, I.: Cryptanalytic applications of the polynomial method for solving multivariate equation systems over GF(2). In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021, Part I. LNCS, vol. 12696, pp. 374–403. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_14

    Chapter  Google Scholar 

  22. Dinur, I., Dunkelman, O., Keller, N., Shamir, A.: Efficient dissection of composite problems, with applications to cryptanalysis, knapsacks, and combinatorial search problems. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 719–740. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_42

    Chapter  Google Scholar 

  23. Dinur, I., Dunkelman, O., Shamir, A.: New attacks on Keccak-224 and Keccak-256. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 442–461. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_25

    Chapter  Google Scholar 

  24. Dinur, I., Dunkelman, O., Shamir, A.: Collision attacks on up to 5 rounds of SHA-3 using generalized internal differentials. In: Moriai, S. (ed.) FSE 2013. LNCS, vol. 8424, pp. 219–240. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43933-3_12

    Chapter  Google Scholar 

  25. Dobraunig, C., Eichlseder, M., Mendel, F., Schläffer, M.: Ascon v.12: lightweight authenticated encryption and hashing. J. Cryptol. 34(3), 33 (2021)

    Article  Google Scholar 

  26. Dong, X., Hua, J., Sun, S., Li, Z., Wang, X., Hu, L.: Meet-in-the-middle attacks revisited: key-recovery, collision, and preimage attacks. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021, Part III. LNCS, vol. 12827, pp. 278–308. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_10

    Chapter  Google Scholar 

  27. Dong, X., Zhao, B., Qin, L., Hou, Q., Zhang, S., Wang, X.: Generic mitm attack frameworks on sponge constructions. IACR Cryptol. ePrint Arch., p. 604 (2024)

    Google Scholar 

  28. Dunkelman, O., Sekar, G., Preneel, B.: Improved meet-in-the-middle attacks on reduced-round DES. In: Srinathan, K., Rangan, C.P., Yung, M. (eds.) INDOCRYPT 2007. LNCS, vol. 4859, pp. 86–100. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-77026-8_8

    Chapter  Google Scholar 

  29. Espitau, T., Fouque, P.-A., Karpman, P.: Higher-order differential meet-in-the-middle preimage attacks on SHA-1 and BLAKE. In: Gennaro, R., Robshaw, M. (eds.) CRYPTO 2015, Part I. LNCS, vol. 9215, pp. 683–701. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47989-6_33

    Chapter  Google Scholar 

  30. Robert, W.: Floyd. Nondeterministic algorithms. J. ACM 14(4), 636–644 (1967)

    Article  Google Scholar 

  31. Fuhr, T., Minaud, B.: Match box meet-in-the-middle attack against KATAN. In: Cid, C., Rechberger, C. (eds.) FSE 2014. LNCS, vol. 8540, pp. 61–81. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46706-0_4

    Chapter  Google Scholar 

  32. Gérault, D., Peyrin, T., Tan, Q.Q.: Exploring differential-based distinguishers and forgeries for ASCON. IACR Trans. Symmetric Cryptol. 2021(3), 102–136 (2021)

    Article  Google Scholar 

  33. Guo, J., Liao, G., Liu, G., Liu, M., Qiao, K., Song, L.: Practical collision attacks against round-reduced SHA-3. J. Cryptol. 33(1), 228–270 (2020)

    Article  MathSciNet  Google Scholar 

  34. Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preimage attacks: first results on full tiger, and improved results on MD4 and SHA-2. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 56–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17373-8_4

    Chapter  Google Scholar 

  35. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash functions. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 222–239. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_13

    Chapter  Google Scholar 

  36. Hadipour, H., Eichlseder, M.: Autoguess: a tool for finding guess-and-determine attacks and key bridges. In: Ateniese, G., Venturi, D. (eds.) ACNS 2022. LNCS, vol. 13269, pp. 230–250. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-09234-3_12

    Chapter  Google Scholar 

  37. Khovratovich, D.: Bicliques for permutations: collision and preimage attacks in stronger settings. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 544–561. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_33

    Chapter  Google Scholar 

  38. Khovratovich, D., Leurent, G., Rechberger, C.: Narrow-bicliques: cryptanalysis of full IDEA. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 392–410. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_24

    Chapter  Google Scholar 

  39. Knellwolf, S., Khovratovich, D.: New preimage attacks against reduced SHA-1. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 367–383. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32009-5_22

    Chapter  Google Scholar 

  40. Kölbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 - efficient short-input hashing for post-quantum applications. IACR Trans. Symmetric Cryptol. 2016(2), 1–29 (2016)

    Google Scholar 

  41. Lefevre, C., Mennink, B.: Tight preimage resistance of the sponge construction. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022 , Part IV. LNCS, vol. 13510, pp. 185–204. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15985-5_7

    Chapter  Google Scholar 

  42. Li, J., Isobe, T., Shibutani, K.: Converting meet-in-the-middle preimage attack into pseudo collision attack: application to SHA-2. In: Canteaut, A. (ed.) FSE 2012. LNCS, vol. 7549, pp. 264–286. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34047-5_16

    Chapter  Google Scholar 

  43. Liu, G., Lu, J., Li, H., Tang, P., Qiu, W.: Preimage attacks against lightweight scheme Xoodyak based on deep learning. In: Arai, K. (ed.) FICC 2021. AISC, vol. 1364, pp. 637–648. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-73103-8_45

    Chapter  Google Scholar 

  44. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, New York (1990). https://doi.org/10.1007/0-387-34805-0_21

    Chapter  Google Scholar 

  45. Naya-Plasencia, M.: How to improve rebound attacks. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 188–205. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_11

    Chapter  Google Scholar 

  46. The U.S. National Institute of Standards and Technology. SHA-3 standard: Permutation-based hash and extendable-output functions. Federal Information Processing Standard, FIPS 202, 5th August 2015

    Google Scholar 

  47. Preneel, B., Govaerts, R., Vandewalle, J.: Hash functions based on block ciphers: a synthetic approach. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 368–378. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48329-2_31

    Chapter  Google Scholar 

  48. Qin, L., Hua, J., Dong, X., Yan, H., Wang, X.: Meet-in-the-middle preimage attacks on sponge-based hashing. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part IV. LNCS, vol. 14007, pp. 158–188. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30634-1_6

    Chapter  Google Scholar 

  49. Sasaki, Yu.: Integer linear programming for three-subset meet-in-the-middle attacks: application to GIFT. In: Inomata, A., Yasuda, K. (eds.) IWSEC 2018. LNCS, vol. 11049, pp. 227–243. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97916-8_15

    Chapter  Google Scholar 

  50. Sasaki, Yu.: Meet-in-the-middle preimage attacks on AES hashing modes and an application to whirlpool. In: Joux, A. (ed.) FSE 2011. LNCS, vol. 6733, pp. 378–396. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21702-9_22

    Chapter  Google Scholar 

  51. Sasaki, Yu., Aoki, K.: Finding preimages in full MD5 faster than exhaustive search. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 134–152. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01001-9_8

    Chapter  Google Scholar 

  52. Sasaki, Yu., Wang, L., Wu, S., Wu, W.: Investigating fundamental security requirements on whirlpool: improved preimage and collision attacks. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 562–579. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4_34

    Chapter  Google Scholar 

  53. Schrottenloher, A., Stevens, M.: Simplified MITM modeling for permutations: new (quantum) attacks. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022 , Part III. LNCS, vol. 13509, pp. 717–747. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15982-4_24

    Chapter  Google Scholar 

  54. Schrottenloher, A., Stevens, M.: Simplified modeling of MITM attacks for block ciphers: new (quantum) attacks. IACR Cryptol. ePrint Arch., p. 816 (2023)

    Google Scholar 

  55. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic applications. J. Cryptol. 12(1), 1–28 (1999)

    Article  MathSciNet  Google Scholar 

  56. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005). https://doi.org/10.1007/11535218_2

    Chapter  Google Scholar 

  57. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 19–35. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_2

    Chapter  Google Scholar 

  58. Yang, G., Zhu, B., Suder, V., Aagaard, M.D., Gong, G.: The Simeck family of lightweight block ciphers. In: Güneysu, T., Handschuh, H. (eds.) CHES 2015. LNCS, vol. 9293, pp. 307–329. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48324-4_16

    Chapter  Google Scholar 

  59. Zhang, Z., Hou, C., Liu, M.: Collision attacks on round-reduced SHA-3 using conditional internal differentials. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part IV. LNCS, vol. 14007, pp. 220–251. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30634-1_8

    Chapter  Google Scholar 

  60. Zong, R., Dong, X., Wang, X.: Collision attacks on round-reduced Gimli-Hash/Ascon-Xof/Ascon-Hash. Cryptol. ePrint Arch., Paper 2019/111

    Google Scholar 

Download references

Acknowledgements

We thank the anonymous reviewers from CRYPTO 2024 for their insightful comments. This work is supported by the Natural Science Foundation of China (62272257, 62072270, 62302250), the Major Program of Guangdong Basic and Applied Research (2019B030302008), the Young Elite Scientists Sponsorship Program by CAST (2023QNRC001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boxin Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, X., Zhao, B., Qin, L., Hou, Q., Zhang, S., Wang, X. (2024). Generic MitM Attack Frameworks on Sponge Constructions. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14923. Springer, Cham. https://doi.org/10.1007/978-3-031-68385-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68385-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68384-8

  • Online ISBN: 978-3-031-68385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics