Skip to main content

The Algebraic FreeLunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2024 (CRYPTO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14923))

Included in the following conference series:

  • 980 Accesses

Abstract

In this paper, we present a new type of algebraic attack that applies to many recent arithmetization-oriented families of permutations, such as those used in Griffin, Anemoi, ArionHash, and XHash8, whose security relies on the hardness of the constrained-input constrained-output (CICO) problem. We refer to the attack as the FreeLunch approach: the monomial ordering is chosen so that the natural polynomial system encoding the CICO problem already is a Gröbner basis. In addition, we present a new dedicated resolution algorithm for FreeLunch systems of complexity lower than current state-of-the-art resolution algorithms.

We show that the FreeLunch approach challenges the security of full-round instances of Anemoi, Arion and Griffin, and we experimentally confirm these theoretical results. In particular, combining the FreeLunch attack with a new technique to bypass 3 rounds of Griffin, we recover a CICO solution for 7 out of 10 rounds of Griffin in less than four hours on one core of AMD EPYC 7352 (2.3 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This seems to be a choice of pragmatism, as it seems easier to get tight bounds; nothing in their experiments suggests that \(\text {F}_5\) is faster.

  2. 2.

    If the solving steps were meals of the day, the lunch would be free, hence FreeLunch.

  3. 3.

    https://github.com/aurelbof/algebraic-freelunch.

  4. 4.

    We say that the permutation has t branches, or as we like to think of them, brunches.

  5. 5.

    If a single variable is introduced in a round, we will ease notation by writing \(\boldsymbol{x}_i = x_i\), \(\boldsymbol{p}_i = p_i\) and \(\alpha _i\).

  6. 6.

    The complexities correspond to the number of basic \(\mathbb {F}_p\) operations; writing them as number of calls to the primitive would yield lower but hard to compute numbers.

  7. 7.

    A similar observation of bypassing rounds was already considered in [35, Section 6.2]. However, the authors only describe a method for bypassing a single round for \(t=3\) and do not consider the effect of having a larger t.

  8. 8.

    The only difference from the description in Sect. 3.4 is that we allow \(\mathcal {L}_{i,j}\) from (3) to be quadratic, due to the term \(Q_{i-1}^2\).

References

  1. Advanced Encryption Standard (AES): National Institute of Standards and Technology, NIST FIPS PUB 197, U.S. Department of Commerce, November 2001

    Google Scholar 

  2. Albrecht, M.R., et al.: Algebraic cryptanalysis of STARK-friendly designs: application to MARVELlous and MiMC. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11923, pp. 371–397. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34618-8_13

  3. Albrecht, M., Grassi, L., Rechberger, C., Roy, A., Tiessen, T.: MiMC: efficient encryption and cryptographic hashing with minimal multiplicative complexity. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 191–219. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6_7

    Chapter  Google Scholar 

  4. Albrecht, M.R., Rechberger, C., Schneider, T., Tiessen, T., Zohner, M.: Ciphers for MPC and FHE. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 430–454. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_17

    Chapter  Google Scholar 

  5. Aly, A., Ashur, T., Ben-Sasson, E., Dhooghe, S., Szepieniec, A.: Design of symmetric-key primitives for advanced cryptographic protocols. IACR Trans. Symmetric Cryptol. 2020(3), 1–45 (2020). https://tosc.iacr.org/index.php/ToSC/article/view/8695

  6. Ashur, T., Kindi, A., Mahzoun, M.: XHash8 and XHash12: efficient STARK-friendly hash functions. Cryptology ePrint Archive, Paper 2023/1045 (2023). https://eprint.iacr.org/2023/1045

  7. Ashur, T., Kindi, A., Meier, W., Szepieniec, A., Threadbare, B.: Rescue-prime optimized. Cryptology ePrint Archive, Paper 2022/1577 (2022). https://eprint.iacr.org/2022/1577

  8. Ashur, T., Mahzoun, M., Toprakhisar, D.: Chaghri - an FHE-friendly block cipher. In: Yin, H., Stavrou, A., Cremers, C., Shi, E. (eds.) Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, CCS 2022, Los Angeles, CA, USA, 7–11 November 2022, pp. 139–150. ACM (2022). https://doi.org/10.1145/3548606.3559364

  9. Bariant, A.: Algebraic cryptanalysis of full Ciminion. Cryptology ePrint Archive, Paper 2023/1283 (2023). https://eprint.iacr.org/2023/1283

  10. Bariant, A., et al.: The algebraic freelunch efficient Gröbner basis attacks against arithmetization-oriented primitives. Cryptology ePrint Archive, Paper 2024/347 (2024). https://eprint.iacr.org/2024/347

  11. Bariant, A., Bouvier, C., Leurent, G., Perrin, L.: Algebraic attacks against some arithmetization-oriented primitives. IACR Trans. Symmetric Cryptol. 2022(3), 73–101 (2022). https://tosc.iacr.org/index.php/ToSC/article/view/9850

  12. Berthomieu, J., Neiger, V., El Din, M.S.: Faster change of order algorithm for Gröbner bases under shape and stability assumptions. In: Proceedings of the 2022 International Symposium on Symbolic and Algebraic Computation, pp. 409–418 (2022)

    Google Scholar 

  13. Bertoni, G., Daemen, J., Peters, M., Assche, G.V.: Cryptographic sponge functions (2011). https://keccak.team/files/CSF-0.1.pdf. Accessed 23 May 2024

  14. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system, I. The user language. J. Symbolic Comput. 24(3-4), 235–265 (1997). https://doi.org/10.1006/jsco.1996.0125. Computational algebra and number theory, London (1993)

  15. Bouvier, C., et al.: New design techniques for efficient arithmetization-oriented hash functions: Anemoi permutations and Jive compression mode. In: Handschuh, H., Lysyanskaya, A. (eds.) Advances in Cryptology - CRYPTO 2023. Lecture Notes in Computer Science, vol. 14083, pp. 507–539. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-38548-3_17

    Chapter  Google Scholar 

  16. Buchberger, B.: A theoretical basis for the reduction of polynomials to canonical forms. ACM SIGSAM Bull. 10(3), 19–29 (1976)

    Article  MathSciNet  Google Scholar 

  17. Buchmann, J., Pyshkin, A., Weinmann, R.-P.: A zero-dimensional Gröbner basis for AES-128. In: Robshaw, M. (ed.) FSE 2006. LNCS, vol. 4047, pp. 78–88. Springer, Heidelberg (2006). https://doi.org/10.1007/11799313_6

    Chapter  Google Scholar 

  18. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 313–333. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-52993-5_16

    Chapter  Google Scholar 

  19. Canteaut, A., et al.: Stream ciphers: a practical solution for efficient homomorphic-ciphertext compression. J. Cryptol. 31(3), 885–916 (2018). https://doi.org/10.1007/S00145-017-9273-9

    Article  MathSciNet  Google Scholar 

  20. Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Informatica 28(7), 693–701 (1991)

    Article  MathSciNet  Google Scholar 

  21. Cosseron, O., Hoffmann, C., Méaux, P., Standaert, F.: Towards case-optimized hybrid homomorphic encryption - featuring the Elisabeth stream cipher. In: Agrawal, S., Lin, D. (eds.) ASIACRYPT 2022, Part III. LNCS, vol. 13793, pp. 32–67. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-22969-5_2

  22. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms. UTM, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16721-3

    Book  Google Scholar 

  23. Cox, D.A., Little, J.B., O’Shea, D.: Using Algebraic Geometry, Graduate Texts in Mathematics, vol. 185. Springer, New York (1998). https://doi.org/10.1007/978-1-4757-6911-1

  24. Dobraunig, C., et al.: Rasta: a cipher with low ANDdepth and few ANDs per bit. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10991, pp. 662–692. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96884-1_22

    Chapter  Google Scholar 

  25. Duval, S., Lallemand, V., Rotella, Y.: Cryptanalysis of the FLIP family of stream ciphers. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 457–475. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_17

    Chapter  Google Scholar 

  26. Eisenbud, D.: Commutative Algebra: With a View Toward Algebraic Geometry, vol. 150. Springer, New York (2013). https://doi.org/10.1007/978-1-4612-5350-1

  27. Faugère, J.C., Mou, C.: Sparse FGLM algorithms. J. Symb. Comput. 80, 538–569 (2017)

    Article  MathSciNet  Google Scholar 

  28. Faugère, J.-C., Gaudry, P., Huot, L., Renault, G.: Sub-cubic change of ordering for Gröbner basis: a probabilistic approach. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation, pp. 170–177 (2014)

    Google Scholar 

  29. Faugère, J.-C., Gianni, P., Lazard, D., Mora, T.: Efficient computation of zero-dimensional Gröbner bases by change of ordering. J. Symb. Comput. 16(4), 329–344 (1993)

    Article  Google Scholar 

  30. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (\(\text{ F}_4\)). J. Pure Appl. Algebra 139(1–3), 61–88 (1999)

    Article  MathSciNet  Google Scholar 

  31. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases without reduction to zero (\(\text{ F}_5\)). In: Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation, pp. 75–83 (2002)

    Google Scholar 

  32. Gilbert, H., Boissier, R.H., Jean, J., Reinhard, J.: Cryptanalysis of Elisabeth-4. In: Guo, J., Steinfeld, R. (eds.) ASIACRYPT 2023, Part III. LNCS, vol. 14440, pp. 256–284. Springer, Singapore (2023). https://doi.org/10.1007/978-981-99-8727-6_9

  33. Gilbert, H., Peyrin, T.: Super-Sbox cryptanalysis: improved attacks for AES-like permutations. In: Hong, S., Iwata, T. (eds.) FSE 2010. LNCS, vol. 6147, pp. 365–383. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13858-4_21

    Chapter  Google Scholar 

  34. Giorgi, P., Jeannerod, C.P., Villard, G.: On the complexity of polynomial matrix computations. In: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 135–142 (2003)

    Google Scholar 

  35. Grassi, L., Hao, Y., Rechberger, C., Schofnegger, M., Walch, R., Wang, Q.: Horst meets fluid-SPN: Griffin for zero-knowledge applications. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023, Part III. LNCS, vol. 14083, pp. 573–606. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38548-3_19

  36. Guido, B., Joan, D., Michaël, P., Gilles, V.: Cryptographic sponge functions (2011). https://keccak.team/files/CSF-0.1.pdf

  37. Ha, J., Kim, S., Lee, B., Lee, J., Son, M.: Rubato: noisy ciphers for approximate homomorphic encryption. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022, Part I. LNCS, vol. 13275, pp. 581–610. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-06944-4_20

  38. Hart, W.B.: Flint: Fast Library for Number Theory. Computeralgebra-Rundbrief 49 (2011)

    Google Scholar 

  39. Hyun, S.G., Neiger, V., Schost, É.: Implementations of efficient univariate polynomial matrix algorithms and application to bivariate resultants. In: Proceedings ISSAC 2019, pp. 235–242. ACM (2019). https://doi.org/10.1145/3326229.3326272. https://github.com/vneiger/pml

  40. Labahn, G., Neiger, V., Zhou, W.: Fast, deterministic computation of the Hermite normal form and determinant of a polynomial matrix. J. Complex. 42, 44–71 (2017)

    Article  MathSciNet  Google Scholar 

  41. Masure, L., Méaux, P., Moos, T., Standaert, F.: Effective and efficient masking with low noise using small-mersenne-prime ciphers. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, Part IV. LNCS, vol. 14007, pp. 596–627. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30634-1_20

  42. Méaux, P., Journault, A., Standaert, F.-X., Carlet, C.: Towards stream ciphers for efficient FHE with low-noise ciphertexts. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9665, pp. 311–343. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49890-3_13

    Chapter  Google Scholar 

  43. Neiger, V., Schost, É.: Computing syzygies in finite dimension using fast linear algebra. J. Complex. 60, 101502 (2020). https://doi.org/10.1016/J.JCO.2020.101502

  44. Roy, A., Steiner, M.J., Trevisani, S.: Arion: Arithmetization-Oriented Permutation and Hashing from Generalized Triangular Dynamical Systems (2023). https://arxiv.org/abs/2303.04639

  45. Szepieniec, A., Ashur, T., Dhooghe, S.: Rescue-prime: a standard specification (SoK). Cryptology ePrint Archive, Paper 2020/1143 (2020). https://eprint.iacr.org/2020/1143

  46. The PML team: PML: Polynomial Matrix Library (2023). Version 0.3. https://github.com/vneiger/pml

  47. The Sage Developers: SageMath, the Sage Mathematics Software System (2022). https://www.sagemath.org

  48. Shoup, V., et al.: NTL: a library for doing number theory. https://libntl.org/

Download references

Acknowledgements

This work has been facilitated through the COSINUS associate team between Inria and Simula. The authors would like to thank Gaëtan Leurent for the helpful insights on the new dedicated Gröbner basis solving algorithm, and Pierre Briaud and Carlos Cid for the good discussions in the early stages of this work. The authors would also like to thank Vincent Neiger for the proof-reading and the discussions on the algorithmic aspects of the Gröbner basis theory. The research in this paper was supported in part by the French DGA, and by the French grant 22-PECY-0010 (project CRYPTANALYSE). The work of Aurélien Bœuf, Axel Lemoine, and Léo Perrin was supported by the European Research Council (ERC, grant agreement no. 101041545 “ReSCALE”). Morten Øygarden has been supported by the Norwegian Research Council through the project qsIo2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augustin Bariant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bariant, A. et al. (2024). The Algebraic FreeLunch: Efficient Gröbner Basis Attacks Against Arithmetization-Oriented Primitives. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14923. Springer, Cham. https://doi.org/10.1007/978-3-031-68385-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68385-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68384-8

  • Online ISBN: 978-3-031-68385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics