Skip to main content

On Central Primitives for Quantum Cryptography with Classical Communication

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2024 (CRYPTO 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14926))

Included in the following conference series:

  • 860 Accesses

Abstract

Recent work has introduced the “Quantum-Computation Classical-Communication” (QCCC) (Chung et al.) setting for cryptography. There has been some evidence that One Way Puzzles (\(\textsf{OWPuzz}\)) are the natural central cryptographic primitive for this setting (Khurana and Tomer). For a primitive to be considered central it should have several characteristics. It should be well behaved (which for this paper we will think of as having amplification, combiners, and universal constructions); it should be implied by a wide variety of other primitives; and it should be equivalent to some class of useful primitives. We present combiners, correctness and security amplification, and a universal construction for \(\textsf{OWPuzz}\). Our proof of security amplification uses a new and cleaner construction of EFI from \(\textsf{OWPuzz}\) (in comparison to the result of Khurana and Tomer) that generalizes to weak \(\textsf{OWPuzz}\) and is the most technically involved section of the paper. It was previously known that \(\textsf{OWPuzz}\) are implied by other primitives of interest including commitments, symmetric key encryption, one way state generators (\(\textsf{OWSG}\)), and therefore pseudorandom states (\(\textsf{PRS}\)). However we are able to rule out \(\textsf{OWPuzz}\)’s equivalence to many of these primitives by showing a black box separation between general \(\textsf{OWPuzz}\) and a restricted class of \(\textsf{OWPuzz}\) (those with efficient verification, which we call \(\mathsf {EV-OWPuzz}\)). We then show that \(\mathsf {EV-OWPuzz}\) are also implied by most of these primitives, which separates them from \(\textsf{OWPuzz}\) as well. This separation also separates extending \(\textsf{PRS}\) from highly compressing \(\textsf{PRS}\) answering an open question of Ananth et al.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aharonov, D., Ben-Or, M., Brandão, F.G.S.L., Sattath, O.: The pursuit of uniqueness: extending valiant-vazirani theorem to the probabilistic and quantum settings. Quantum 6, 668 (2022)

    Article  Google Scholar 

  2. Adcock, M., Cleve, R.: A quantum Goldreich-Levin theorem with cryptographic applications (2001)

    Google Scholar 

  3. Austrin, P., Chung, H., Chung, K.-M., Fu, S., Lin, Y.-T., Mahmoody, M.: On the impossibility of key agreements from quantum random oracles. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II, pp. 165–194. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-15979-4_6

  4. Ananth, P., Lin, Y.-T., Yuen, H.: Pseudorandom strings from pseudorandom quantum states. arXiv preprint arXiv:2306.05613 (2023)

  5. Ananth, P., Lin, Y.-T., Yuen, H.: Pseudorandom strings from pseudorandom quantum states. Cryptology ePrint Archive, Paper 2023/904 (2023. https://eprint.iacr.org/2023/904

  6. Ananth, P. Qian, L., Yuen, H.: Hyptography from pseudorandom quantum states. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, pp. 208–236. Springer, Cham (2022)

    Google Scholar 

  7. Barhoush, M., Behera, A., Ozer, L., Salvail, L., Sattath, O.: Signatures from pseudorandom states via \(\bot \)-prfs (2024)

    Google Scholar 

  8. Brakerski, Z., Canetti, R., Qian, L.: On the computational hardness needed for quantum cryptography. Cryptology ePrint Archive, Paper 2022/1181 (2022). https://eprint.iacr.org/2022/1181

  9. Bouaziz-Ermann, S., Muguruza, G.: Quantum pseudorandomness cannot be shrunk in a black-box way. Cryptology ePrint Archive, Paper 2024/291 (2024). https://eprint.iacr.org/2024/291

  10. Bostanci, J., Qian, L., Spooner, N., Yuen, H.: An efficient quantum parallel repetition theorem and applications (2023)

    Google Scholar 

  11. Chen, Y.-H., Chung, K.-M., Vadhan, S.P., Wu, X., Lai , C.-Y.: Computational notions of quantum min-entropy (2017)

    Google Scholar 

  12. Cavalar, B., Goldin, E., Gray, M., Hall, P., Liu, Y., Pelecanos, A.: On the computational hardness of quantum one-wayness. arXiv preprint arXiv:2312.08363 (2023)

  13. Chung, K.-M., Lin, Y.-T., Mahmoody, M.: Black-box separations for non-interactive classical commitments in a quantum world. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023, pp. 144–172. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30545-0_6

  14. Coladangelo, A., Mutreja, S.: On black-box separations of quantum digital signatures from pseudorandom states (2024)

    Google Scholar 

  15. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM 33(4), 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  16. Goldreich, O., Levin, L.A.: A hard-core predicate for all one-way functions. In: Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC 1989, pp. 25–32. Association for Computing Machinery, New York (1989)

    Google Scholar 

  17. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against adaptive chosen message attack this research was supported by NSF grant MCS-80-06938, an IBM/MIT faculty development award, and Darpa contract n00014-85-k-0125: extended abstract. In: Johnson, D.S., Nishizeki, T., Nozaki, A., Wilf, H.S. (eds.) Discrete Algorithms and Complexity, pp. 287–310. Academic Press (1987)

    Google Scholar 

  18. Goldreich, O.: A note on computational indistinguishability. Inf. Process. Lett. 34(6), 277–281 (1990)

    Article  MathSciNet  Google Scholar 

  19. HÅstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Google Scholar 

  20. Harnik, D., Kilian, J., Naor, M., Reingold, O., Rosen, A.: On robust combiners for oblivious transfer and other primitives. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 96–113. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_6

  21. Hiroka, T., Kitagawa, F., Nishimaki, R., Yamakawa, T.: Robust combiners and universal constructions for quantum cryptography. Cryptology ePrint Archive, Paper 2023/1772 (2023). https://eprint.iacr.org/2023/1772

  22. Hhan, M., Morimae, T., Yamakawa, T.: Quantum public key encryption and commitments from the hardness of detecting superpositions to cryptography (2023)

    Google Scholar 

  23. Haitner, I., Reingold, O., Vadhan, S.: Efficiency improvements in constructing pseudorandom generators from one-way functions. In: Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC 2010, pp. 437–446. Association for Computing Machinery, New York (2010)

    Google Scholar 

  24. Impagliazzo, R., Luby, M.: One-way functions are essential for complexity based cryptography. In: 30th Annual Symposium on Foundations of Computer Science, pp. 230–235 (1989)

    Google Scholar 

  25. Impagliazzo, R.: A personal view of average-case complexity. In: Proceedings of Structure in Complexity Theory, Tenth Annual IEEE Conference, pp. 134–147 (1995)

    Google Scholar 

  26. Irani, S., Natarajan, A., Nirkhe, C., Rao, S., Yuen, H.: Quantum search-to-decision reductions and the state synthesis problem. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  27. Kitagawa, F., Nishimaki, R., Yamakaw, T.: Publicly verifiable deletion from minimal assumptions. Cryptology ePrint Archive, Paper 2023/538 (2023). https://eprint.iacr.org/2023/538

  28. Kretschmer, W.: Quantum pseudorandomness and classical complexity. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2021)

    Google Scholar 

  29. Khurana, D., Tomer, K.: Commitments from quantum one-wayness (2024)

    Google Scholar 

  30. Lamport, L.: Constructing digital signatures from a one way function. Technical Report CSL-98, October 1979. This paper was published by IEEE in the Proceedings of HICSS-43 in January (2010)

    Google Scholar 

  31. Levin, L.A.: One way functions and pseudorandom generators. Combinatorica 7(4), 357–363 (1987)

    Article  MathSciNet  Google Scholar 

  32. Mazor, N., Pass, R.: Counting unpredictable bits: a simple PRG from one-way functions. Cryptology ePrint Archive, Paper 2023/1451 (2023). https://eprint.iacr.org/2023/1451

  33. Morimae, T., Yamakawa, T.: One-wayness in quantum cryptography. Cryptology ePrint Archive, Paper 2022/1336 (2022). https://eprint.iacr.org/2022/1336

  34. Morimae, T., Yamakawa, T.: Quantum commitments and signatures without one-way functions. In: Annual International Cryptology Conference, pp. 269–295. Springer (2022). https://doi.org/10.1007/978-3-031-15802-5_10

  35. Naor, M.: Bit commitment using pseudorandomness. J. Cryptol. 4(2), 151–158 (1991)

    Article  Google Scholar 

  36. Vadhan, S., Zheng, C.J.: Characterizing pseudoentropy and simplifying pseudorandom generator constructions. In: Proceedings of the 44th Annual ACM Symposium on Theory of Computing (STOC 2012), pp. 817–836. ACM (2012)

    Google Scholar 

  37. Yao, A.C.: Theory and application of trapdoor functions. In: 23rd Annual Symposium on Foundations of Computer Science (SFCS 1982), pp. 80–91 (1982)

    Google Scholar 

Download references

Acknowledgments

We thank Yanyi Liu for insightful discussion. Kai-Min Chung was partially supported by the Air Force Office of Scientific Research under award number FA2386-23-1-4107 and NSTC QC project, under Grant no. NSTC 112-2119-M-001-006. E. Goldin was supported by a National Science Foundation Graduate Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai-Min Chung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chung, KM., Goldin, E., Gray, M. (2024). On Central Primitives for Quantum Cryptography with Classical Communication. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14926. Springer, Cham. https://doi.org/10.1007/978-3-031-68394-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68394-7_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68393-0

  • Online ISBN: 978-3-031-68394-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics