Abstract
A unit-vector (UV) correlation is an additive secret-sharing of a vector of length B that contains 1 in a secret random position and 0’s elsewhere. UV correlations are a useful resource for many cryptographic applications, including low-communication secure multiparty computation and multi-server private information retrieval. However, current practical methods for securely generating UV correlations involve a significant communication cost per instance, and become even more expensive when requiring security against malicious parties.
In this work, we present a new approach for constructing a pseudorandom correlation generator (PCG) for securely generating n independent instances of UV correlations of any polynomial length B. Such a PCG compresses the n UV instances into correlated seeds whose length is sublinear in the description size \(n\cdot \log B\). Our new PCGs apply in both the honest-majority and dishonest-majority settings, and are based on a variety of assumptions. In particular, in the honest-majority case they only require “unstructured” assumptions. Our PCGs give rise to secure end-to-end protocols for generating n instances of UV correlations with o(n) bits of communication. This applies even to an authenticated variant of UV correlations, which is useful for security against malicious parties. Unlike previous theoretical solutions, some instances of our PCGs offer good concrete efficiency.
Our technical approach is based on combining a low-degree sparse pseudorandom generator, mapping a sparse seed to a pseudorandom sparse output, with homomorphic secret sharing for low-degree polynomials. We then reduce such sparse PRGs to local PRGs over large alphabets, and explore old and new approaches for maximizing the stretch of such PRGs while minimizing their locality.
Finally, towards further compressing the PCG seeds, we present a new PRG-based construction of a multiparty distributed point function (DPF), whose outputs are degree-1 Shamir-shares of a secret point function. This result is independently motivated by other DPF applications.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Intuitively, a compression ratio of s suggests that our PCG approach is \(s \times \) better compared to the baseline approach for compressing a given number of unit vectors (more details are included in the full version).
- 2.
Composition between the PRG and even simple distribution sampling not only increases the computation degree, but also ruins “restricted-multiplication friendliness” of the computation. Several HSS schemes support “restricted” multiplications, where one multiplicand must be an original input. Thus for each multiplication of outputs from the PRG, one must be completely recomputed from scratch.
- 3.
We describe a natural generalization of our construction in the full version which allows for Local PRGs with different input and output alphabet. Here we restrict to Local PRGs with same input and output alphabet for simplicity.
References
Abram, D., Scholl, P.: Low-communication multiparty triple generation for SPDZ from ring-LPN. In: The International Conference on Practice and Theory in Public Key Cryptography (PKC) (2022)
Addanki, S., Garbe, K., Jaffe, E., Ostrovsky, R., Polychroniadou, A.: Prio+: privacy preserving aggregate statistics via boolean shares. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS, vol. 13409, pp. 516–539. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14791-3_23
Applebaum, B.: Cryptographic hardness of random local functions - survey. Comput. Complex. 25, 667–722 (2016)
Applebaum, B., Ishai, Y., Kushilevitz, E.: On pseudorandom generators with linear stretch in \({\rm nc}^{0}\). Comput. Complex. 17(1), 38–69 (2008). https://doi.org/10.1007/S00037-007-0237-6
Applebaum, B., Lovett, S.: Algebraic attacks against random local functions and their countermeasures. In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2016)
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Cham (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Barak, B., Brakerski, Z., Komargodski, I., Kothari, P.K.: Limits on low-degree pseudorandom generators (or: Sum-of-squares meets program obfuscation). In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2017)
Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low communication overhead. In: Proceedings of the International Cryptology Conference (CRYPTO) (1991)
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (1988)
Bendlin, R., Damgård, I., Orlandi, C., Zakarias, S.: Semi-homomorphic encryption and multiparty computation. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2011)
Benhamouda, F., Boyle, E., Gilboa, N., Halevi, S., Ishai, Y., Nof, A.: Generalized pseudorandom secret sharing and efficient straggler-resilient secure computation. In: Proceedings of the Theory of Cryptography Conference (TCC) (2021)
Bombar, M., Bui, D., Couteau, G., Couvreur, A., Ducros, C., Servan-Schreiber, S.: FOLEAGE: OLE-based multi-party computation for boolean circuits. IACR Cryptol. ePrint Arch. 429 (2024). https://eprint.iacr.org/2024/429
Bombar, M., Couteau, G., Couvreur, A., Ducros, C.: Correlated pseudorandomness from the hardness of quasi-abelian decoding. In: Proceedings of the International Cryptology Conference (CRYPTO) (2023)
Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38980-1_7
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2018)
Boyle, E., et al.: Correlated pseudorandomness from expand-accumulate codes. In: Proceedings of the International Cryptology Conference (CRYPTO) (2022)
Boyle, E., et al.: Oblivious transfer with constant computational overhead. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2023)
Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2019)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Proceedings of the International Cryptology Conference (CRYPTO) (2019)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Correlated pseudorandom functions from variable-density LPN. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (2020)
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrù, M.: Homomorphic secret sharing: optimizations and applications. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2017)
Boyle, E., Couteau, G., Meyer, P.: Sublinear secure computation from new assumptions. In: Proceedings of the Theory of Cryptography Conference (TCC) (2022)
Boyle, E., Couteau, G., Meyer, P.: Sublinear-communication secure multiparty computation does not require FHE. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2023)
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12
Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Proceedings of the International Cryptology Conference (CRYPTO) (2016)
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2016)
Boyle, E., Gilboa, N., Ishai, Y.: Secure computation with preprocessing via function secret sharing. In: Proceedings of the Theory of Cryptography Conference (TCC) (2019)
Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1
Boyle, E., LaVigne, R.: Personal communication (2023)
Brüggemann, A., Hundt, R., Schneider, T., Suresh, A., Yalame, H.: FLUTE: fast and secure lookup table evaluations. In: In Proceedings of the IEEE Symposium on Security and Privacy (S &P) (2023)
Bui, D., Couteau, G., Meyer, P., Passelègue, A., Riahinia, M.: Fast public-key silent OT and more from constrained naor-reingold. In: Joye, M., Leander, G. (eds.) EUROCRYPT 2024, Part VI. LNCS, vol. 14656, pp. 88–118. Springer, Cham (2024). https://doi.org/10.1007/978-3-031-58751-1_4
Bunn, P., Kushilevitz, E., Ostrovsky, R.: CNF-FSS and its applications. In: IACR International Conference on Public-Key Cryptography, pp. 283–314 (2022)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (1988)
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (1995)
Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: 14th USENIX symposium on networked systems design and implementation (NSDI 2017), pp. 259–282 (2017)
Couteau, G.: A note on the communication complexity of multiparty computation in the correlated randomness model. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2019)
Couteau, G., Ducros, C.: Pseudorandom correlation functions from variable-density LPN, revisited. In: Boldyreva, A., Kolesnikov, V. (eds.) PKC 2023, Part II. LNCS, vol. 13941, pp. 221–250. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-31371-4_8
Couteau, G., Dupin, A., Méaux, P., Rossi, M., Rotella, Y.: On the concrete security of Goldreich’s pseudorandom generator. In: International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT) (2018)
Couteau, G., Meyer, P.: Breaking the circuit size barrier for secure computation under quasi-polynomial LPN. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2021)
Cramer, R., Damgård, I., Ishai, Y.: Share conversion, pseudorandom secret-sharing and applications to secure computation. In: Proceedings of the Theory of Cryptography Conference (TCC) (2005)
Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2003)
Damgård, I., Nielsen, J.B., Nielsen, M., Ranellucci, S.: The tinytable protocol for 2-party secure computation, or: gate-scrambling revisited. In: Proceedings of the International Cryptology Conference (CRYPTO) (2017)
Damgård, I., Pastro, V., Smart, N.P., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Proceedings of the International Cryptology Conference (CRYPTO) (2012)
Dao, Q., Ishai, Y., Jain, A., Lin, H.: Multi-party homomorphic secret sharing and sublinear MPC from sparse LPN. In: Proceedings of the International Cryptology Conference (CRYPTO) (2023)
Dessouky, G., Koushanfar, F., Sadeghi, A.R., Schneider, T., Zeitouni, S., Zohner, M.: Pushing the communication barrier in secure computation using lookup tables. In: Proceedings of the Network and Distributed System Security Symposium (NDSS) (2017)
Devadas, L., Quach, W., Vaikuntanathan, V., Wee, H., Wichs, D.: Succinct LWE sampling, random polynomials, and obfuscation. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part II. LNCS, vol. 13043, pp. 256–287. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-90453-1_9
Diaconis, P., Rockmore, D.: Efficient computation of the fourier transform on finite groups. J. Am. Math. Soc. 3(2), 297–332 (1990)
Döttling, N., Garg, S., Malavolta, G.: Personal communication (2023)
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., Naor, M.: Our data, ourselves: privacy via distributed noise generation. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 486–503. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_29
Dwork, C., McSherry, F., Nissim, K., Smith, A.: Calibrating noise to sensitivity in private data analysis. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 265–284. Springer, Heidelberg (2006). https://doi.org/10.1007/11681878_14
Eriguchi, R., Ichikawa, A., Kunihiro, N., Nuida, K.: Efficient noise generation to achieve differential privacy with applications to secure multiparty computation. In: Borisov, N., Diaz, C. (eds.) FC 2021. LNCS, vol. 12674, pp. 271–290. Springer, Cham (2021). https://doi.org/10.1007/978-3-662-64322-8_13
Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 823–852. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_29
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2009)
Geoffroy, C., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Proceedings of the International Cryptology Conference (CRYPTO) (2021)
Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2014)
Goldreich, O.: Candidate one-way functions based on expander graphs. In: Studies in Complexity and Cryptography (2011)
Gueron, S., Kounavis, M.E.: Intel carry-less multiplication instruction and its usage for computing the GCM mode. https://www.intel.com/content/dam/develop/external/us/en/documents/clmul-wp-rev-2-02-2014-04-20.pdf
Ishai, Y., Kelkar, M., Narayanan, V., Zafar, L.: One-message secure reductions: on the cost of converting correlations. In: Proceedings of the International Cryptology Conference (CRYPTO) (2023)
Ishai, Y., Kilian, J., Nissim, K., Petrank, E.: Extending oblivious transfers efficiently. In: Proceedings of the International Cryptology Conference (CRYPTO) (2003)
Ishai, Y., Kushilevitz, E., Meldgaard, S., Orlandi, C., Paskin-Cherniavsky, A.: On the power of correlated randomness in secure computation. In: Proceedings of the Theory of Cryptography Conference (TCC) (2013)
Ishai, Y., Lai, R.W.F., Malavolta, G.: A geometric approach to homomorphic secret sharing. In: The International Conference on Practice and Theory in Public Key Cryptography (PKC) (2021)
Ito, M., Saito, A., Nishizeki, T.: Secret sharing schemes realizing general access structure. In: IEEE Global Telecommunication Conference (1987)
Jain, A., Lin, H., Sahai, A.: Indistinguishability obfuscation from well-founded assumptions. In: Proceedings of the ACM Symposium on Theory of Computing (STOC) (2021)
Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster secure multi-party computation of AES and DES using lookup tables. In: Proceedings of the International Conference on Applied Cryptography and Network Security (ACNS) (2017)
Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low degree polynomials. In: International Conference on the Theory and Application of Cryptology and Information Security (ASIACRYPT) (2018)
Lin, H., Tessaro, S.: Indistinguishability obfuscation from trilinear maps and block-wise local PRGs. In: Proceedings of the International Cryptology Conference (CRYPTO) (2017)
Lombardi, A., Vaikuntanathan, V.: Limits on the locality of pseudorandom generators and applications to indistinguishability obfuscation. In: Proceedings of the Theory of Cryptography Conference (TCC) (2017)
Mossel, E., Shpilka, A., Trevisan, L.: On epsilon-biased generators in \({\rm NC}^{{0}}\). In: Proceedings of the IEEE Symposium on Foundations of Computer Science (FOCS) (2003)
Orlandi, C., Scholl, P., Yakoubov, S.: The rise of paillier: homomorphic secret sharing and public-key silent OT. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2021)
Ostrovsky, R., Shoup, V.: Private information storage (extended abstract). In: STOC 1997, pp. 294–303 (1997)
Patra, A., Schneider, T., Suresh, A., Yalame, H.: ABY2.0: improved mixed-protocol secure two-party computation. In: Proceedings of the USENIX Security Symposium (2021)
Raghuraman, S., Rindal, P., Tanguy, T.: Expand-convolute codes for pseudorandom correlation generators from LPN. In: Proceedings of the International Cryptology Conference (CRYPTO) (2023)
Rotaru, D., Wood, T.: Marbled circuits: mixing arithmetic and boolean circuits with active security. In: Hao, F., Ruj, S., Sen Gupta, S. (eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 227–249. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-35423-7_12
Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and applications. In: Proceedings of the International Cryptology Conference (CRYPTO) (2021)
Schoppmann, P., Gascón, A., Reichert, L., Raykova, M.: Distributed vector-ole: improved constructions and implementation. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2019)
Unal, A.: New baselines for local pseudorandom number generators by field extensions (2023). https://eprint.iacr.org/2023/550
Ünal, A.: Worst-case subexponential attacks on PRGs of constant degree or constant locality. In: Proceedings of the International Conference on the Theory and Applications of Cryptographic Techniques (EUROCRYPT) (2023)
Yang, J., Guo, Q., Johansson, T., Lentmaier, M.: Revisiting the concrete security of Goldreich’s pseudorandom generator. IEEE Trans. Inf. Theory 68(2), 1329–1354 (2021)
Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for correlated OT with small communication. In: Proceedings of the ACM Conference on Computer and Communications Security (CCS) (2020)
Zichron, L.: Locally computable arithmetic pseudorandom generators (2017)
Acknowledgements
We thank Benny Applebaum, Andrej Bogdanov, Geoffroy Couteau, Itai Dinur, Aayush Jain and Vinod Vaikuntanathan for helpful discussions and pointers. E. Boyle was supported in part by AFOSR Award FA9550-21-1-0046 and ERC Project HSS (852952). Y. Ishai was supported by ERC grant NTSC (742754), BSF grant 2022370, ISF grant 2774/20, and ISF-NSFC grant 3127/23. Y. Ma was supported by a Microsoft Research PhD Fellowship.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Agarwal, A., Boyle, E., Gilboa, N., Ishai, Y., Kelkar, M., Ma, Y. (2024). Compressing Unit-Vector Correlations via Sparse Pseudorandom Generators. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14927. Springer, Cham. https://doi.org/10.1007/978-3-031-68397-8_11
Download citation
DOI: https://doi.org/10.1007/978-3-031-68397-8_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68396-1
Online ISBN: 978-3-031-68397-8
eBook Packages: Computer ScienceComputer Science (R0)