Abstract
Secure computation enables mutually distrusting parties to jointly compute a function on their secret inputs, while revealing nothing beyond the function output. A long-running challenge is understanding the required communication complexity of such protocols – in particular, when communication can be sublinear in the circuit representation size of the desired function. While several techniques have demonstrated the viability of sublinear secure computation in the two-party setting, known methods for the corresponding multi-party setting rely either on fully homomorphic encryption, non-standard hardness assumptions, or are limited to a small number of parties. In this work, we expand the study of multi-party sublinear secure computation by demonstrating sublinear-communication 10-party computation from various combinations of standard hardness assumptions. In particular, our contributions show:
-
8-party homomorphic secret sharing under the hardness of (DDH or DCR), the superpolynomial hardness of LPN, and the existence of constant-depth pseudorandom generators;
-
A general framework for achieving \((N+M)\)-party sublinear secure computation using M-party homomorphic secret sharing for \(\ensuremath {\textsf{NC}} ^1\) and correlated symmetric PIR.
Together, our constructions imply the existence of a 10-party MPC protocol with sublinear computation. At the core of our techniques lies a novel series of computational approaches based on homomorphic secret sharing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
A distributed point function allows sharing a point function \(f_{\alpha ,\beta }\) (that is, \(f_{\alpha ,\beta }(\alpha )=\beta \) and \(f_{\alpha ,\beta }(x) = 0\) else) such that (1) the shares computationally hide \(f_{\alpha ,\beta }\), and (2) given shares of \(f_{\alpha ,\beta }\), the parties can locally obtain additive shares of \(f_{\alpha ,\beta }(x)\) for any x.
- 3.
Since the receiver knows the positions of the noise, using a puncturable pseudorandom function actually suffices. Using the Doerner-shelat protocol [27], securely distributing the punctured key of a puncturable PRF can be done in two rounds.
References
Abram, D., Damgård, I., Orlandi, C., Scholl, P.: An algebraic framework for silent preprocessing with trustless setup and active security. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13510, pp. 421–452. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15985-5_15
Applebaum, B.: Pseudorandom generators with long stretch and low locality from random local one-way functions. In: Karloff, H.J., Pitassi, T. (eds.) 44th ACM STOC, pp. 805–816. ACM Press, May 2012
Applebaum, B., Haramaty, N., Ishai, Y., Kushilevitz, E., Vaikuntanathan, V.: Low-complexity cryptographic hash functions. In: Papadimitriou, C.H. (ed.) ITCS 2017, vol. 4266, pp. 7:1–7:31. LIPIcs, 67, January 2017
Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation with low communication, computation and interaction via threshold FHE. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 483–501. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_29
Beaver, D., Feigenbaum, J., Kilian, J., Rogaway, P.: Security with low communication overhead. In: Menezes, A.J., Vanstone, S.A. (eds.) CRYPTO 1990. LNCS, vol. 537, pp. 62–76. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-38424-3_5
Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation (extended abstract). In: 20th ACM STOC, pp. 1–10. ACM Press, May 1988
Berbain, C., Gilbert, H., Patarin, J.: QUAD: a practical stream cipher with provable security. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 109–128. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_8
Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16
Boyle, E., Couteau, G., Meyer, P.: Sublinear secure computation from new assumptions. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022. LNCS, vol. 13748, pp. 121–150. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22365-5_5
Boyle, E., Couteau, G., Meyer, P.: Sublinear-communication secure multiparty computation does not require FHE. In: Hazay, C., Stam, M. (eds.) EUROCRYPT 2023. LNCS, vol. 14005, pp. 159–189. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-30617-4_6
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part II. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12
Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19
Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing: improvements and extensions. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1292–1303. ACM Press, October 2016
Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1
Brakerski, Z., Branco, P., Döttling, N., Garg, S., Malavolta, G.: Constant ciphertext-rate non-committing encryption from standard assumptions. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part I. LNCS, vol. 12550, pp. 58–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64375-1_3
Brakerski, Z., Branco, P., Döttling, N., Pu, S.: Batch-OT with optimal rate. In: Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13276, pp. 157–186. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07085-3_6
Castagnos, G., Laguillaumie, F., Tucker, I.: Threshold linearly homomorphic encryption on \(z/2^kz\). Cryptology ePrint Archive (2022)
Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: 20th ACM STOC, pp. 11–19. ACM Press, May 1988
Chillotti, I., Orsini, E., Scholl, P., Smart, N.P., Leeuwen, B.V.: Scooby: improved multi-party homomorphic secret sharing based on FHE. In: Galdi, C., Jarecki, S. (eds.) SCN 2022. LNCS, vol. 13409, pp. 540–563. Springre, Cham (2022). https://doi.org/10.1007/978-3-031-14791-3_24
Chillotti, I., Orsini, E., Scholl, P., Van Leeuwen, B.: Scooby: improved multi-party homomorphic secret sharing based on FHE. In: Information and Computation, p. 105133 (2023)
Chor, B., Gilboa, N.: Computationally private information retrieval (extended abstract). In: 29th ACM STOC, pp. 304–313. ACM Press, May 1997
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October 1995
Couteau, G., Meyer, P.: Breaking the circuit size barrier for secure computation under Quasi-polynomial LPN. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 842–870. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_29
Damgård, I., Faust, S., Hazay, C.: Secure two-party computation with low communication. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 54–74. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_4
Dao, Q., Ishai, Y., Jain, A., Lin, H.: Multi-party homomorphic secret sharing and sublinear MPC from sparse LPN. In: Handschuh, H., Lysyanskaya, A. (eds.) CRYPTO 2023. LNCS, vol. 14082, pp. 315–348. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-38545-2_11
Dodis, Y., Halevi, S., Rothblum, R.D., Wichs, D.: Spooky encryption and its applications. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016, Part III. LNCS, vol. 9816, pp. 93–122. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53015-3_4
Doerner, J., shelat, a.: Scaling ORAM for secure computation. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu, D. (eds.) ACM CCS 2017, pp. 523–535. ACM Press, October / November 2017
Döttling, N., Garg, S., Ishai, Y., Malavolta, G., Mour, T., Ostrovsky, R.: Trapdoor hash functions and their applications. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019, Part III. LNCS, vol. 11694, pp. 3–32. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_1
ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg (1984). https://doi.org/10.1007/3-540-39568-7_2
Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher, M. (ed.) 41st ACM STOC, pp. 169–178. ACM Press, May / June 2009
Gilboa, N., Ishai, Y.: Distributed point functions and their applications. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 640–658. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_35
Goldreich, O.: Candidate one-way functions based on expander graphs. Cryptology ePrint Archive, Report 2000/063 (2000). https://eprint.iacr.org/2000/063
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or A completeness theorem for protocols with honest majority. In: Aho, A. (ed.) 19th ACM STOC, pp. 218–229. ACM Press, May 1987
Goldwasser, S., Micali, S.: Probabilistic encryption and how to play mental poker keeping secret all partial information. In: 14th ACM STOC, pp. 365–377. ACM Press, May 1982
Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: 38th FOCS, pp. 364–373. IEEE Computer Society Press, October 1997
Matsumoto, T., Imai, H.: Public quadratic polynominal-tuples for efficient signature-verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT’88. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (May (1988)
Naor, M., Nissim, K.: Communication preserving protocols for secure function evaluation. In: 33rd ACM STOC, pp. 590–599. ACM Press, July 2001
Orlandi, C., Scholl, P., Yakoubov, S.: The rise of Paillier: homomorphic secret sharing and public-key silent OT. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12696, pp. 678–708. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77870-5_24
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Roy, L., Singh, J.: Large message homomorphic secret sharing from DCR and applications. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 687–717. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_23
Wolf, C.: Multivariate quadratic polynomials in public key cryptography. Cryptology ePrint Archive, Report 2005/393 (2005). https://eprint.iacr.org/2005/393
Yao, A.C.C.: How to generate and exchange secrets (extended abstract). In: 27th FOCS, pp. 162–167. IEEE Computer Society Press, October 1986
Acknowledgements
Part of this work was done while the second author was visiting Université Paris Cité and supported by the ReLaX program (CNRS, IRL2000). The first and second author acknowledge the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE). This work was also supported by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Couteau, G., Kumar, N. (2024). 10-Party Sublinear Secure Computation from Standard Assumptions. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14928. Springer, Cham. https://doi.org/10.1007/978-3-031-68400-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-68400-5_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68399-2
Online ISBN: 978-3-031-68400-5
eBook Packages: Computer ScienceComputer Science (R0)