Abstract
Authenticated PIR enables a server to initially commit to a database of N items, for which a client can later privately obtain individual items with complexity sublinear in N, with the added guarantee that the retrieved item is consistent with the committed database. A crucial requirement is privacy with abort, i.e., the server should not learn anything about a query even if it learns whether the client aborts.
This problem was recently considered by Colombo et al. (USENIX ’23), who proposed solutions secure under the assumption that the database is committed to honestly. Here, we close this gap for their DDH-based scheme, and present a solution that tolerates fully malicious servers that provide potentially malformed commitments. Our scheme has communication and client computational complexity \(\mathcal {O}_{\lambda }(\sqrt{N})\), does not require any additional assumptions, and does not introduce heavy machinery (e.g., generic succinct proofs). We do so by introducing validation queries, which, from the server’s perspective, are computationally indistinguishable from regular PIR queries. Provided that the server succeeds in correctly answering \(\kappa \) such validation queries, the client is convinced with probability \(1-\frac{1}{2^\kappa }\) that the server is unable to break privacy with abort.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.O.: XPIR: private information retrieval for everyone. PoPETs 2016(2), 155–174 (2016). https://doi.org/10.1515/popets-2016-0010
Ali, A., Lepoint, T., Patel, S., Raykova, M., Schoppmann, P., Seth, K., Yeo, K.: Communication-computation trade-offs in PIR. In: Bailey, M., Greenstadt, R. (eds.) USENIX Security 2021, pp. 1811–1828. USENIX Association, August 2021. https://www.usenix.org/conference/usenixsecurity21/presentation/ali
Angel, S., Chen, H., Laine, K., Setty, S.T.V.: PIR with compressed queries and amortized query processing. In: 2018 IEEE Symposium on Security and Privacy, pp. 962–979. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/SP.2018.00062
Angel, S., Setty, S.T.V.: Unobservable communication over fully untrusted infrastructure. In: Keeton, K., Roscoe, T. (eds.) 12th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2016, Savannah, GA, USA, 2–4 November 2016, pp. 551–569. USENIX Association (2016). https://www.usenix.org/conference/osdi16/technical-sessions/presentation/angel
Barak, B., Goldreich, O.: Universal arguments and their applications. SIAM J. Comput. 38(5), 1661–1694 (2008). https://doi.org/10.1137/070709244
Beimel, A., Stahl, Y.: Robust information-theoretic private information retrieval. J. Cryptol. 20(3), 295–321 (2007). https://doi.org/10.1007/s00145-007-0424-2
Ben-David, S., Kalai, Y.T., Paneth, O.: Verifiable private information retrieval. In: Kiltz, E., Vaikuntanathan, V. (eds.) TCC 2022, Part III. LNCS, vol. 13749, pp. 3–32. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-22368-6_1
Bleichenbacher, D.: Chosen ciphertext attacks against protocols based on the RSA encryption standard PKCS #1. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 1–12. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055716
Boyle, E., Ishai, Y., Pass, R., Wootters, M.: Can we access a database both locally and privately? In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 662–693. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_22
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy, pp. 315–334. IEEE Computer Society Press, May 2018. https://doi.org/10.1109/SP.2018.00020
Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_28
Camenisch, J., Neven, G., Shelat, A.: Simulatable adaptive oblivious transfer. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 573–590. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_33
Canetti, R., Holmgren, J., Richelson, S.: Towards doubly efficient private information retrieval. In: Kalai, Y., Reyzin, L. (eds.) TCC 2017, Part II. LNCS, vol. 10678, pp. 694–726. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70503-3_23
de Castro, L., Lee, K.: VeriSimplePIR: verifiability in SimplePIR at no online cost for honest servers. In: USENIX Security 2024. USENIX Association, August 2024. https://www.usenix.org/conference/usenixsecurity24/presentation/de-castro
Cheng, R., et al.: Talek: private group messaging with hidden access patterns. In: ACSAC 2020: Annual Computer Security Applications Conference, Virtual Event/Austin, TX, USA, 7–11 December 2020, pp. 84–99. ACM (2020). https://doi.org/10.1145/3427228.3427231
Chor, B., Goldreich, O., Kushilevitz, E., Sudan, M.: Private information retrieval. In: 36th FOCS, pp. 41–50. IEEE Computer Society Press, October 1995. https://doi.org/10.1109/SFCS.1995.492461
Colombo, S., Nikitin, K., Corrigan-Gibbs, H., Wu, D.J., Ford, B.: Authenticated private information retrieval. In: Calandrino, J.A., Troncoso, C. (eds.) USENIX Security 2023, pp. 3835–3851. USENIX Association, August 2023. https://www.usenix.org/conference/usenixsecurity23/presentation/colombo
Davidson, A., Pestana, G., Celi, S.: FrodoPIR: simple, scalable, single-server private information retrieval. PoPETs 2023(1), 365–383 (2023). https://doi.org/10.56553/popets-2023-0022
Devet, C., Goldberg, I., Heninger, N.: Optimally robust private information retrieval. In: Kohno, T. (ed.) USENIX Security 2012, pp. 269–283. USENIX Association, August 2012. https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/devet
Dietz, M., Tessaro, S.: Fully malicious authenticated PIR. Cryptology ePrint Archive, Report 2023/1804 (2023). https://eprint.iacr.org/2023/1804
Dong, C., Chen, L.: A fast single server private information retrieval protocol with low communication cost. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014, Part I. LNCS, vol. 8712, pp. 380–399. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11203-9_22
Doröz, Y., Sunar, B., Hammouri, G.: Bandwidth efficient PIR from NTRU. In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 195–207. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_16
Eriguchi, R., Kurosawa, K., Nuida, K.: Multi-server PIR with full error detection and limited error correction. In: Dachman-Soled, D. (ed.) 3rd Conference on Information-Theoretic Cryptography (ITC 2022). Leibniz International Proceedings in Informatics (LIPIcs), vol. 230, pp. 1:1–1:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2022). https://doi.org/10.4230/LIPIcs.ITC.2022.1
Gentry, C., Halevi, S.: Compressible FHE with applications to PIR. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol. 11892, pp. 438–464. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_17
Gentry, C., Wichs, D.: Separating succinct non-interactive arguments from all falsifiable assumptions. In: Fortnow, L., Vadhan, S.P. (eds.) 43rd ACM STOC, pp. 99–108. ACM Press, June 2011. https://doi.org/10.1145/1993636.1993651
Goldberg, I.: Improving the robustness of private information retrieval. In: 2007 IEEE Symposium on Security and Privacy, pp. 131–148. IEEE Computer Society Press, May 2007. https://doi.org/10.1109/SP.2007.23
Green, M., Ladd, W., Miers, I.: A protocol for privately reporting ad impressions at scale. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 1591–1601. ACM Press, October 2016. https://doi.org/10.1145/2976749.2978407
Gupta, T., Crooks, N., Mulhern, W., Setty, S.T.V., Alvisi, L., Walfish, M.: Scalable and private media consumption with popcorn. In: Argyraki, K.J., Isaacs, R. (eds.) 13th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2016, Santa Clara, CA, USA, 16–18 March 2016, pp. 91–107. USENIX Association (2016). https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/gupta-trinabh
Henzinger, A., Dauterman, E., Corrigan-Gibbs, H., Zeldovich, N.: Private web search with Tiptoe. In: Flinn, J., Seltzer, M.I., Druschel, P., Kaufmann, A., Mace, J. (eds.) Proceedings of the 29th Symposium on Operating Systems Principles, SOSP 2023, Koblenz, Germany, 23–26 October 2023, pp. 396–416. ACM (2023). https://doi.org/10.1145/3600006.3613134
Henzinger, A., Hong, M.M., Corrigan-Gibbs, H., Meiklejohn, S., Vaikuntanathan, V.: One server for the price of two: simple and fast single-server private information retrieval. In: Calandrino, J.A., Troncoso, C. (eds.) 32nd USENIX Security Symposium, USENIX Security 2023, Anaheim, CA, USA, 9–11 August 2023. USENIX Association (2023). https://www.usenix.org/conference/usenixsecurity23/presentation/henzinger
Huang, Y., Katz, J., Evans, D.: Efficient secure two-party computation using symmetric cut-and-choose. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 18–35. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40084-1_2
Kilian, J.: On the complexity of bounded-interaction and noninteractive zero-knowledge proofs. In: 35th FOCS, pp. 466–477. IEEE Computer Society Press, November 1994. https://doi.org/10.1109/SFCS.1994.365744
Kiraz, M., Schoenmakers, B.: A protocol issue for the malicious case of Yao’s garbled circuit construction. In: 27th Symposium on Information Theory in the Benelux, vol. 29, pp. 283–290 (2006)
Kurosawa, K.: How to correct errors in multi-server PIR. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11922, pp. 564–574. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34621-8_20
Kushilevitz, E., Ostrovsky, R.: Replication is NOT needed: SINGLE database, computationally-private information retrieval. In: 38th FOCS, pp. 364–373. IEEE Computer Society Press, October 1997. https://doi.org/10.1109/SFCS.1997.646125
Lin, W.K., Mook, E., Wichs, D.: Doubly efficient private information retrieval and fully homomorphic RAM computation from ring LWE. In: 55th ACM STOC, pp. 595–608. ACM Press, June 2023. https://doi.org/10.1145/3564246.3585175
Lindell, Y., Pinkas, B.: Secure two-party computation via cut-and-choose oblivious transfer. In: Ishai, Y. (ed.) TCC 2011. LNCS, vol. 6597, pp. 329–346. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19571-6_20
Lipmaa, H.: An oblivious transfer protocol with log-squared communication. In: Zhou, J., Lopez, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 314–328. Springer, Heidelberg (2005). https://doi.org/10.1007/11556992_23
Ryan, M.D.: Enhanced certificate transparency and end-to-end encrypted mail. In: NDSS 2014. The Internet Society, February 2014
Vaudenay, S.: Security flaws induced by CBC padding — applications to SSL, IPSEC, WTLS... In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 534–545. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46035-7_35
Wang, X., Zhao, L.: Verifiable single-server private information retrieval. In: Naccache, D., et al. (eds.) ICICS 2018. LNCS, vol. 11149, pp. 478–493. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01950-1_28
Yi, X., Kaosar, M.G., Paulet, R., Bertino, E.: Single-database private information retrieval from fully homomorphic encryption. IEEE Trans. Knowl. Data Eng. 25(5), 1125–1134 (2013). https://doi.org/10.1109/TKDE.2012.90
Zhang, L.F., Safavi-Naini, R.: Verifiable multi-server private information retrieval. In: Boureanu, I., Owesarski, P., Vaudenay, S. (eds.) ACNS 2014. LNCS, vol. 8479, pp. 62–79. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07536-5_5
Zhao, L., Wang, X., Huang, X.: Verifiable single-server private information retrieval from LWE with binary errors. Inf. Sci. 546, 897–923 (2021). https://doi.org/10.1016/j.ins.2020.08.071
Acknowledgments
We thank Chenzhi Zhu for his involvement in the initial stage of this project. This research was partially supported by NSF grants CNS-2026774, CNS-2154174, a JP Morgan Faculty Award, a CISCO Faculty Award, and a gift from Microsoft.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 International Association for Cryptologic Research
About this paper
Cite this paper
Dietz, M., Tessaro, S. (2024). Fully Malicious Authenticated PIR. In: Reyzin, L., Stebila, D. (eds) Advances in Cryptology – CRYPTO 2024. CRYPTO 2024. Lecture Notes in Computer Science, vol 14928. Springer, Cham. https://doi.org/10.1007/978-3-031-68400-5_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-68400-5_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68399-2
Online ISBN: 978-3-031-68400-5
eBook Packages: Computer ScienceComputer Science (R0)