Skip to main content

General Position Problem of Butterfly Derived Architectures

  • Conference paper
  • First Online:
Deep Sciences for Computing and Communications (IconDeepCom 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2177))

  • 68 Accesses

Abstract

The problem of finding a largest general position set S of G in which no three vertices lie on an isometric path is referred as the general position problem. This set S is called a gp-set of G. The gp-number, denoted by gp(G) is the cardinality of S in G. This NP-complete problem is one of the recent topic of research which has wide applications in navigation of autonomous robots [13]. Butterfly network is one of the most significant and widely researched interconnection architecture. Previously, we have studied the general position problem of butterfly network [22]. In this article, we solve the general position problem of butterfly derived architectures such as augmented butterfly network, enhanced butterfly network and compute their gp-number.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anand, B.S., Ullas Chandran, S.V., Changat, M., Klavẑar, S., Thomas, E.J.: A characterization of general position sets in graphs. Appl. Math. Comput. 359, 84–89 (2019). https://doi.org/10.1016/j.amc.2019.04.064

    Article  MathSciNet  Google Scholar 

  2. Bondy. J.A., Murty, U.S.R.: Graph Theory. GTM 244. Springer, Berlin (2008)

    Google Scholar 

  3. Dudeney, H.E.: Amusements in Mathematics, Nelson, Edinburg (1917)

    Google Scholar 

  4. Froese, V., Kanj, I., Nichterlein, A., Niedermeier, R.: Finding points in general position. Int. J. Comput. Geom. Appl. 27, 277–296 (2017)

    Article  MathSciNet  Google Scholar 

  5. Ghorbani, M., Klavẑar, S., Maimani, H.R., Momeni, M., Rahimi-Mahid, F., Rus, G.: The general position problem on Kneser graphs and on some graph operations. Discuss. Math. Graph Theory 41, 1199–1213 (2021)

    Article  MathSciNet  Google Scholar 

  6. Klavẑar, S., Kuziak, D., Peterin, I., Yero, I.G.: A Steiner general position problem in graph theory. Comput. and Appl. Math. 40(6), 223 (2021)

    Article  MathSciNet  Google Scholar 

  7. Klavẑar, S., Patkos, B., Rus, G., Yero, I.G.: On general position sets in cartesian products. Results Math. 76, 123 (2021). https://doi.org/10.1007/s00025-021-01438-x

    Article  MathSciNet  Google Scholar 

  8. Klavẑar, S., Rall, D.F., Yero, I.G.: General d-position sets, Ars Math. Contemp. (2021). https://doi.org/10.26493/1855-3974.2384.77d

  9. Klavẑar, S., Rus, G.: The general position number of integer lattices. Appl. Math. Comput. 390, 125664 (2021). https://doi.org/10.1016/j.amc.2020.125664

    Article  MathSciNet  Google Scholar 

  10. Klavẑar, S., Yero, I.G.: The general position problem and strong resolving graphs. Open Math. 17, 1126–1135 (2019)

    Article  MathSciNet  Google Scholar 

  11. Ku, C.Y., Wong, K.B.: On no-three-in-line problem on m-dimensional torus. Graphs Combin. 34, 355–364 (2018). https://doi.org/10.1007/s00373-018-1878-8

    Article  MathSciNet  Google Scholar 

  12. Manuel, P., Abd-El-Barr, M.I., Rajasingh, I., Rajan, B.: An efficient representation of Beněs network and its applications. J. Discrete Alg. 6, 11–19 (2008)

    Article  Google Scholar 

  13. Manuel, P., Klavẑar, S.: A general position problem in graph theory. Bull. Aust. Math. Soc. 98(2), 177–187 (2018). https://doi.org/10.1017/S0004972718000473

    Article  MathSciNet  Google Scholar 

  14. Manuel, P., Klavẑar, S.: The graph theory general position problem on some interconnection networks. Fund. Inform. 163, 339–350 (2018)

    MathSciNet  Google Scholar 

  15. Manuel, P., Rajasingh, I., Rajan B., Prabha, R.: Augmented butterfly network. J. Combin. Inform. Syst. Sci. 33, 27–35 (2008)

    Google Scholar 

  16. Felix, J.M.R., Heris, S.A.: Cordial labelling of butterfly and enhanced butterfly networks. Int. J. Transf. Appl. Math. Stat. 3(I), 30–38 (2020)

    Google Scholar 

  17. Misiak, A., Stepien, Z., Szymaszkiewicz, A., Szymaszkiewicz, L., Zwierzchowski, M.: A note on the no-three-in-line problem on a torus. Discrete Math. 339, 217–221 (2016). https://doi.org/10.1016/j.disc.2015.08.006

    Article  MathSciNet  Google Scholar 

  18. Neethu, P.K., Ullas Chandran, S.V., Changat, M., Klavẑar, S.: On the general position number of Complementary prisms. Fund. Inform. 178(3), 267–281 (2021)

    MathSciNet  Google Scholar 

  19. Patkos, B.: On the general position problem on Kneser graphs. Ars Math. Contemp. 18(2), 273–280 (2020). https://doi.org/10.26493/1855-3974.1957.a0f

  20. Payne, M., Wood, D.R.: On the general position subset selection problem. SIAMJ. Discrete Math. 27, 1727–1733 (2013)

    Article  MathSciNet  Google Scholar 

  21. Por, A., Wood, D.R.: No-Three-in-Line-in-3D. Algorithmica 47, 481–488 (2007). https://doi.org/10.1007/s00453-006-0158-9

    Article  MathSciNet  Google Scholar 

  22. Prabha, R., Devi, S.R., Manuel, P.: General position problem of butterfly networks. arXiv:2302.06154v1 [math.CO] 13 February 2023

  23. Thomas, E.J., Ullas Chandran, S.V.: Characterization of classes of graphs with large general position number. AKCE Int. J. Graphs Comb. 17, 935–939 (2020)

    Article  MathSciNet  Google Scholar 

  24. Tian, J., Xu, K.: The general position number of Cartesian products involving a factor with small diameter. Appl. Math. Comp. 403, 126206 (2021)

    Article  MathSciNet  Google Scholar 

  25. Tian, J., Xu, K., Klavẑar, S.: The general position number of Cartesian product of two trees. Bull. Aust. Math. Soc. (2020). https://doi.org/10.1017/S0004972720001276

    Article  Google Scholar 

  26. Chandran, S.V.U., Parthasarathy, G.J.: The geodesic irredundant sets in graphs. Int. J. Math. Comb. 4, 135–143 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Renukaa Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Prabha, R., Renukaa Devi, S. (2024). General Position Problem of Butterfly Derived Architectures. In: R., A.U., et al. Deep Sciences for Computing and Communications. IconDeepCom 2023. Communications in Computer and Information Science, vol 2177. Springer, Cham. https://doi.org/10.1007/978-3-031-68908-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-68908-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-68907-9

  • Online ISBN: 978-3-031-68908-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics