Abstract
The problem of finding a largest general position set S of G in which no three vertices lie on an isometric path is referred as the general position problem. This set S is called a gp-set of G. The gp-number, denoted by gp(G) is the cardinality of S in G. This NP-complete problem is one of the recent topic of research which has wide applications in navigation of autonomous robots [13]. Butterfly network is one of the most significant and widely researched interconnection architecture. Previously, we have studied the general position problem of butterfly network [22]. In this article, we solve the general position problem of butterfly derived architectures such as augmented butterfly network, enhanced butterfly network and compute their gp-number.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Anand, B.S., Ullas Chandran, S.V., Changat, M., Klavẑar, S., Thomas, E.J.: A characterization of general position sets in graphs. Appl. Math. Comput. 359, 84–89 (2019). https://doi.org/10.1016/j.amc.2019.04.064
Bondy. J.A., Murty, U.S.R.: Graph Theory. GTM 244. Springer, Berlin (2008)
Dudeney, H.E.: Amusements in Mathematics, Nelson, Edinburg (1917)
Froese, V., Kanj, I., Nichterlein, A., Niedermeier, R.: Finding points in general position. Int. J. Comput. Geom. Appl. 27, 277–296 (2017)
Ghorbani, M., Klavẑar, S., Maimani, H.R., Momeni, M., Rahimi-Mahid, F., Rus, G.: The general position problem on Kneser graphs and on some graph operations. Discuss. Math. Graph Theory 41, 1199–1213 (2021)
Klavẑar, S., Kuziak, D., Peterin, I., Yero, I.G.: A Steiner general position problem in graph theory. Comput. and Appl. Math. 40(6), 223 (2021)
Klavẑar, S., Patkos, B., Rus, G., Yero, I.G.: On general position sets in cartesian products. Results Math. 76, 123 (2021). https://doi.org/10.1007/s00025-021-01438-x
Klavẑar, S., Rall, D.F., Yero, I.G.: General d-position sets, Ars Math. Contemp. (2021). https://doi.org/10.26493/1855-3974.2384.77d
Klavẑar, S., Rus, G.: The general position number of integer lattices. Appl. Math. Comput. 390, 125664 (2021). https://doi.org/10.1016/j.amc.2020.125664
Klavẑar, S., Yero, I.G.: The general position problem and strong resolving graphs. Open Math. 17, 1126–1135 (2019)
Ku, C.Y., Wong, K.B.: On no-three-in-line problem on m-dimensional torus. Graphs Combin. 34, 355–364 (2018). https://doi.org/10.1007/s00373-018-1878-8
Manuel, P., Abd-El-Barr, M.I., Rajasingh, I., Rajan, B.: An efficient representation of Beněs network and its applications. J. Discrete Alg. 6, 11–19 (2008)
Manuel, P., Klavẑar, S.: A general position problem in graph theory. Bull. Aust. Math. Soc. 98(2), 177–187 (2018). https://doi.org/10.1017/S0004972718000473
Manuel, P., Klavẑar, S.: The graph theory general position problem on some interconnection networks. Fund. Inform. 163, 339–350 (2018)
Manuel, P., Rajasingh, I., Rajan B., Prabha, R.: Augmented butterfly network. J. Combin. Inform. Syst. Sci. 33, 27–35 (2008)
Felix, J.M.R., Heris, S.A.: Cordial labelling of butterfly and enhanced butterfly networks. Int. J. Transf. Appl. Math. Stat. 3(I), 30–38 (2020)
Misiak, A., Stepien, Z., Szymaszkiewicz, A., Szymaszkiewicz, L., Zwierzchowski, M.: A note on the no-three-in-line problem on a torus. Discrete Math. 339, 217–221 (2016). https://doi.org/10.1016/j.disc.2015.08.006
Neethu, P.K., Ullas Chandran, S.V., Changat, M., Klavẑar, S.: On the general position number of Complementary prisms. Fund. Inform. 178(3), 267–281 (2021)
Patkos, B.: On the general position problem on Kneser graphs. Ars Math. Contemp. 18(2), 273–280 (2020). https://doi.org/10.26493/1855-3974.1957.a0f
Payne, M., Wood, D.R.: On the general position subset selection problem. SIAMJ. Discrete Math. 27, 1727–1733 (2013)
Por, A., Wood, D.R.: No-Three-in-Line-in-3D. Algorithmica 47, 481–488 (2007). https://doi.org/10.1007/s00453-006-0158-9
Prabha, R., Devi, S.R., Manuel, P.: General position problem of butterfly networks. arXiv:2302.06154v1 [math.CO] 13 February 2023
Thomas, E.J., Ullas Chandran, S.V.: Characterization of classes of graphs with large general position number. AKCE Int. J. Graphs Comb. 17, 935–939 (2020)
Tian, J., Xu, K.: The general position number of Cartesian products involving a factor with small diameter. Appl. Math. Comp. 403, 126206 (2021)
Tian, J., Xu, K., Klavẑar, S.: The general position number of Cartesian product of two trees. Bull. Aust. Math. Soc. (2020). https://doi.org/10.1017/S0004972720001276
Chandran, S.V.U., Parthasarathy, G.J.: The geodesic irredundant sets in graphs. Int. J. Math. Comb. 4, 135–143 (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Prabha, R., Renukaa Devi, S. (2024). General Position Problem of Butterfly Derived Architectures. In: R., A.U., et al. Deep Sciences for Computing and Communications. IconDeepCom 2023. Communications in Computer and Information Science, vol 2177. Springer, Cham. https://doi.org/10.1007/978-3-031-68908-6_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-68908-6_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-68907-9
Online ISBN: 978-3-031-68908-6
eBook Packages: Computer ScienceComputer Science (R0)