Abstract
Computational schemes of the Galerkin type method (GTM) and finite elements method (FEM) for solving elliptic multidimensional boundary value problems (BVPs) with variable coefficients of derivatives in a polyhedral d-dimensional domain, aimed at describing collective models of atomic nuclei are presented.
The solution is sought in the form of an expansion in the GTM basis and/or in the FEM basis of piecewise polynomial functions constructed in analytical form by joining Hermite interpolation polynomials and their derivatives at the boundaries of neighboring finite elements, which have the form of d-dimensional parallelepipeds.
The BVPs are formulated and analyzed for collective models including the mixed derivative of the two-dimensional vibrational part of the five-dimensional Hamiltonian in the representation of the nuclear spin angular momentum in the intrinsic reference frame defined by three Euler angles. Benchmark calculations demonstrate performance and robustness of the approach when applied to calculate the lower part of the energy spectrum and the reduced electric transition probabilities in quadrupole collective models of atomic nuclei.
The calculations of the band spectrum of
Gd isotope using tabulated variable coefficients of the BVP evaluated in the self-consistent relativistic mean-field model revealed a possibility of quasicrossing of energy levels belonging to different rotational bands of a nucleus at high spin values.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc., Englewood Cliffs (1982)
Hess, P.O., Seiwert, M., Maruhn, J., Greiner, W.: General collective model and its application to \({238}_{92}\)U. Z. Phys. A Atoms Nuclei 296, 147–163 (1980)
Libert, J., Quentin, P.: A general solution of the Bohr collective Hamiltonian. Z. Phys. A Atoms Nuclei 306, 315–322 (1982)
Troltenier, D., Maruhn, J.A., Hess, P.O.: Numerical application of the geometric collective model. In: Langanke, K., Maruhn, J.A., Konin, S.E. (eds.) Computational Nuclear Physics 1, pp. 105–128. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-642-76356-4_6
Libert, J., Girod, M., Delaroche, J.-P.L.: Microscopic descriptions of superdeformed bands with the Gogny force: configuration mixing calculations in the A\(\sim \)190 mass region. Phys. Rev. C 60, 054301-1–054301-26 (1999)
Delaroche, J.-P., Girod, M., Gouttea, H., Libert, J.: Structure properties of even-even actinides at normal and super deformed shapes analysed using the Gogny force. Nucl. Phys. A 771, 103–168 (2006)
Niksic, T., Li, Z.P., Vretenar, B.D., Prochniak, L., Meng, J., Ring, P.: Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions. Phys. Rev. C 79, 034303-1–034303-19 (2009)
Ermamatov, M.J., Hess, P.O.: Microscopically derived potential energy surfaces from mostly structural considerations. Ann. Phys. 37, 125–158 (2016)
Mardyban, E.V., Kolganova, E.A., Shneidman, T.M., Jolos, R.V.: Evolution of the phenomenologically determined collective potential along the chain of Zr isotopes. Phys. Rev. C 105, 024321-1–024321-10 (2022)
Deveikis, A., et al.: Symbolic-numeric algorithm for calculations in geometric collective model of atomic nuclei. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2022. LNCS, vol. 13366, pp. 103–123. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14788-3_7
Muir, D.: Microscopic modelling of collective quadrupole excitations of nuclei. Ph.D. thesis, University of York, UK (2021). https://etheses.whiterose.ac.uk/29823/
Dobrowolski, A., Mazurek, K., Góźdź, A.: Rotational bands in the quadrupole-octupole collective model. Phys. Rev. C 97, 024321-1–024321-11 (2018)
Deng, X.-Q., Zhou, S.-G.: Ground state and fission properties of even-a uranium isotopes from multidimensional-constrained relativistic mean field model. Int. J. Mod. Phys. 32(10), 234004-1–234004-20 (2023)
Kumar, K., Baranger, M.: Complete numerical solution of Bohr’s collective Hamiltonian. Nucl. Phys. A 92, 608–652 (1967)
Troltenier, D., Maruhn, J.A., Greiner, W., Hess, P.O.: A general numerical solution of collective quadrupole surface motion applied to microscopically calculated potential energy surfaces. Z. Phys. A Hadrons Nuclei 343, 25–34 (1992)
Troltenier, D.: Ph.D. thesis, J.W. Goethe-Universität, Frankfnrt/Main (1992). (Unpublished)
Gusev, A.A., et al.: Finite element method for solving the collective nuclear model with tetrahedral symmetry. Acta Phys. Pol. B Proc. Suppl. 12, 589–594 (2019)
Gusev, A.A., et al.: Hermite interpolation polynomials on parallelepipeds and FEM applications. Math. Comput. Sci. 17, 1–15 (2023). Article number: 18
Batgerel, B., et al.: Schemes of finite element method for solving multidimensional boundary value problems. J. Math. Sci. 279, 738–755 (2024)
Vandandoo, U., Zhanlav, T., Chuluunbaatar, O., Gusev, A., Vinitsky, S., Chuluunbaatar, G.: High-Order Finite Difference and Finite-Element Methods for Solving Some Partial Differential Equations. Springer, Cham (2024)
Gusev, A.A., et al.: Symbolic-numerical solution of boundary-value problems with self-adjoint second-order differential equation using the finite element method with interpolation hermite polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 138–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_11
Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L.: Solution of boundary-value problems using Kantorovich method. In: EPJ Web of Conferences, vol. 108, pp. 02026-1–02026-6 (2016)
Greiner, W., Maruhn, J.A.: Nuclear Models. Springer, Berlin (1995)
Zhao, P.W., Li, Z.P., Yao, J.M., Meng, J.: New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 82, 054319-1–054319-14 (2010)
Nikšic, T., Paar, N., Vretenar, D., Ring, P.: DIRHB-a relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 185, 1808–1821 (2014)
Tanaka, T., Nazmitdinov, R.G., Iwasawa, K.: Nonaxial octupole deformations in light \(N=Z\) nuclei at high spins. Phys. Rev. C 63, 034309-1–034309-111 (2001)
Nazmitdinov, R.G., Almehed, D., Dönau, F.: Dynamical moment of inertia and quadrupole vibrations in rotating nuclei. Phys. Rev. C 65, 041307(R)-1–041307(R)-4 (2002)
Dobrowolski, A., Mazurek, K., Dudek, J.: Tetrahedral symmetry in nuclei: New predictions based on the collective model. Int. J. Mod. Phys. E 20, 500–506 (2011)
Dobrowolski, A., Mazurek, K., Góźdź, A.: Consistent quadrupole-octupole collective model. Phys. Rev. C 94, 0543220-1–0543220-20 (2016)
Chuluunbaatar, G., Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I.: PI-type fully symmetric quadrature rules on the 3-, ..., 6-simplexes. Comput. Math. Appl. 124, 89–97 (2022)
Acknowledgments
The authors thank Profs. R. Nazdmitdinov and T.M. Shneidman for collaboration. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation, grant No. 075-10-2020-117. P.O.H. gratefully acknowledges financial support from DGAPA-PAIIT (IN116824). P.W. is grateful to the Continuous Basic Scientific Research Project (No. WDJC-2019-13), the Young Talent Development Foundation (Grant No. YC212212000101), and the Leading Innovation Project under Grant Nos. LC192209000701, LC202309000201.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Batgerel, B. et al. (2024). Symbolic-Numeric Solving Boundary Value Problems: Collective Models of Atomic Nuclei. In: Boulier, F., Mou, C., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2024. Lecture Notes in Computer Science, vol 14938. Springer, Cham. https://doi.org/10.1007/978-3-031-69070-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-69070-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-69069-3
Online ISBN: 978-3-031-69070-9
eBook Packages: Computer ScienceComputer Science (R0)