Skip to main content

Symbolic-Numeric Solving Boundary Value Problems: Collective Models of Atomic Nuclei

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2024)

Abstract

Computational schemes of the Galerkin type method (GTM) and finite elements method (FEM) for solving elliptic multidimensional boundary value problems (BVPs) with variable coefficients of derivatives in a polyhedral d-dimensional domain, aimed at describing collective models of atomic nuclei are presented.

The solution is sought in the form of an expansion in the GTM basis and/or in the FEM basis of piecewise polynomial functions constructed in analytical form by joining Hermite interpolation polynomials and their derivatives at the boundaries of neighboring finite elements, which have the form of d-dimensional parallelepipeds.

The BVPs are formulated and analyzed for collective models including the mixed derivative of the two-dimensional vibrational part of the five-dimensional Hamiltonian in the representation of the nuclear spin angular momentum in the intrinsic reference frame defined by three Euler angles. Benchmark calculations demonstrate performance and robustness of the approach when applied to calculate the lower part of the energy spectrum and the reduced electric transition probabilities in quadrupole collective models of atomic nuclei.

The calculations of the band spectrum of Gd isotope using tabulated variable coefficients of the BVP evaluated in the self-consistent relativistic mean-field model revealed a possibility of quasicrossing of energy levels belonging to different rotational bands of a nucleus at high spin values.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc., Englewood Cliffs (1982)

    Google Scholar 

  2. Hess, P.O., Seiwert, M., Maruhn, J., Greiner, W.: General collective model and its application to \({238}_{92}\)U. Z. Phys. A Atoms Nuclei 296, 147–163 (1980)

    Google Scholar 

  3. Libert, J., Quentin, P.: A general solution of the Bohr collective Hamiltonian. Z. Phys. A Atoms Nuclei 306, 315–322 (1982)

    Article  Google Scholar 

  4. Troltenier, D., Maruhn, J.A., Hess, P.O.: Numerical application of the geometric collective model. In: Langanke, K., Maruhn, J.A., Konin, S.E. (eds.) Computational Nuclear Physics 1, pp. 105–128. Springer, Heidelberg (1991). https://doi.org/10.1007/978-3-642-76356-4_6

    Chapter  Google Scholar 

  5. Libert, J., Girod, M., Delaroche, J.-P.L.: Microscopic descriptions of superdeformed bands with the Gogny force: configuration mixing calculations in the A\(\sim \)190 mass region. Phys. Rev. C 60, 054301-1–054301-26 (1999)

    Google Scholar 

  6. Delaroche, J.-P., Girod, M., Gouttea, H., Libert, J.: Structure properties of even-even actinides at normal and super deformed shapes analysed using the Gogny force. Nucl. Phys. A 771, 103–168 (2006)

    Article  Google Scholar 

  7. Niksic, T., Li, Z.P., Vretenar, B.D., Prochniak, L., Meng, J., Ring, P.: Beyond the relativistic mean-field approximation. III. Collective Hamiltonian in five dimensions. Phys. Rev. C 79, 034303-1–034303-19 (2009)

    Google Scholar 

  8. Ermamatov, M.J., Hess, P.O.: Microscopically derived potential energy surfaces from mostly structural considerations. Ann. Phys. 37, 125–158 (2016)

    Article  Google Scholar 

  9. Mardyban, E.V., Kolganova, E.A., Shneidman, T.M., Jolos, R.V.: Evolution of the phenomenologically determined collective potential along the chain of Zr isotopes. Phys. Rev. C 105, 024321-1–024321-10 (2022)

    Google Scholar 

  10. Deveikis, A., et al.: Symbolic-numeric algorithm for calculations in geometric collective model of atomic nuclei. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds.) CASC 2022. LNCS, vol. 13366, pp. 103–123. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-14788-3_7

    Chapter  Google Scholar 

  11. Muir, D.: Microscopic modelling of collective quadrupole excitations of nuclei. Ph.D. thesis, University of York, UK (2021). https://etheses.whiterose.ac.uk/29823/

  12. Dobrowolski, A., Mazurek, K., Góźdź, A.: Rotational bands in the quadrupole-octupole collective model. Phys. Rev. C 97, 024321-1–024321-11 (2018)

    Google Scholar 

  13. Deng, X.-Q., Zhou, S.-G.: Ground state and fission properties of even-a uranium isotopes from multidimensional-constrained relativistic mean field model. Int. J. Mod. Phys. 32(10), 234004-1–234004-20 (2023)

    Google Scholar 

  14. Kumar, K., Baranger, M.: Complete numerical solution of Bohr’s collective Hamiltonian. Nucl. Phys. A 92, 608–652 (1967)

    Article  Google Scholar 

  15. Troltenier, D., Maruhn, J.A., Greiner, W., Hess, P.O.: A general numerical solution of collective quadrupole surface motion applied to microscopically calculated potential energy surfaces. Z. Phys. A Hadrons Nuclei 343, 25–34 (1992)

    Article  Google Scholar 

  16. Troltenier, D.: Ph.D. thesis, J.W. Goethe-Universität, Frankfnrt/Main (1992). (Unpublished)

    Google Scholar 

  17. Gusev, A.A., et al.: Finite element method for solving the collective nuclear model with tetrahedral symmetry. Acta Phys. Pol. B Proc. Suppl. 12, 589–594 (2019)

    Article  Google Scholar 

  18. Gusev, A.A., et al.: Hermite interpolation polynomials on parallelepipeds and FEM applications. Math. Comput. Sci. 17, 1–15 (2023). Article number: 18

    Google Scholar 

  19. Batgerel, B., et al.: Schemes of finite element method for solving multidimensional boundary value problems. J. Math. Sci. 279, 738–755 (2024)

    Article  MathSciNet  Google Scholar 

  20. Vandandoo, U., Zhanlav, T., Chuluunbaatar, O., Gusev, A., Vinitsky, S., Chuluunbaatar, G.: High-Order Finite Difference and Finite-Element Methods for Solving Some Partial Differential Equations. Springer, Cham (2024)

    Book  Google Scholar 

  21. https://www.wolfram.com/mathematica/

  22. Gusev, A.A., et al.: Symbolic-numerical solution of boundary-value problems with self-adjoint second-order differential equation using the finite element method with interpolation hermite polynomials. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2014. LNCS, vol. 8660, pp. 138–154. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10515-4_11

    Chapter  Google Scholar 

  23. Gusev, A.A., Hai, L.L., Chuluunbaatar, O., Vinitsky, S.I., Derbov, V.L.: Solution of boundary-value problems using Kantorovich method. In: EPJ Web of Conferences, vol. 108, pp. 02026-1–02026-6 (2016)

    Google Scholar 

  24. Greiner, W., Maruhn, J.A.: Nuclear Models. Springer, Berlin (1995)

    Google Scholar 

  25. http://www.nndc.bnl.gov/ensdf/

  26. Zhao, P.W., Li, Z.P., Yao, J.M., Meng, J.: New parametrization for the nuclear covariant energy density functional with a point-coupling interaction. Phys. Rev. C 82, 054319-1–054319-14 (2010)

    Google Scholar 

  27. Nikšic, T., Paar, N., Vretenar, D., Ring, P.: DIRHB-a relativistic self-consistent mean-field framework for atomic nuclei. Comput. Phys. Commun. 185, 1808–1821 (2014)

    Article  Google Scholar 

  28. Tanaka, T., Nazmitdinov, R.G., Iwasawa, K.: Nonaxial octupole deformations in light \(N=Z\) nuclei at high spins. Phys. Rev. C 63, 034309-1–034309-111 (2001)

    Google Scholar 

  29. Nazmitdinov, R.G., Almehed, D., Dönau, F.: Dynamical moment of inertia and quadrupole vibrations in rotating nuclei. Phys. Rev. C 65, 041307(R)-1–041307(R)-4 (2002)

    Google Scholar 

  30. Dobrowolski, A., Mazurek, K., Dudek, J.: Tetrahedral symmetry in nuclei: New predictions based on the collective model. Int. J. Mod. Phys. E 20, 500–506 (2011)

    Article  Google Scholar 

  31. Dobrowolski, A., Mazurek, K., Góźdź, A.: Consistent quadrupole-octupole collective model. Phys. Rev. C 94, 0543220-1–0543220-20 (2016)

    Google Scholar 

  32. Chuluunbaatar, G., Chuluunbaatar, O., Gusev, A.A., Vinitsky, S.I.: PI-type fully symmetric quadrature rules on the 3-, ..., 6-simplexes. Comput. Math. Appl. 124, 89–97 (2022)

    Google Scholar 

Download references

Acknowledgments

The authors thank Profs. R. Nazdmitdinov and T.M. Shneidman for collaboration. The work was partially supported by the Ministry of Science and Higher Education of the Russian Federation, grant No. 075-10-2020-117. P.O.H. gratefully acknowledges financial support from DGAPA-PAIIT (IN116824). P.W. is grateful to the Continuous Basic Scientific Research Project (No. WDJC-2019-13), the Young Talent Development Foundation (Grant No. YC212212000101), and the Leading Innovation Project under Grant Nos. LC192209000701, LC202309000201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander A. Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Batgerel, B. et al. (2024). Symbolic-Numeric Solving Boundary Value Problems: Collective Models of Atomic Nuclei. In: Boulier, F., Mou, C., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2024. Lecture Notes in Computer Science, vol 14938. Springer, Cham. https://doi.org/10.1007/978-3-031-69070-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-69070-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-69069-3

  • Online ISBN: 978-3-031-69070-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics