Skip to main content

A \(1.25(1+\epsilon )\)-Approximation Algorithm for Scheduling with Rejection Costs Proportional to Processing Times

  • Conference paper
  • First Online:
Euro-Par 2024: Parallel Processing (Euro-Par 2024)

Abstract

We address an offline job scheduling problem where jobs can either be processed on a limited supply of energy-efficient machines, or offloaded to energy-inefficient machines (with an unlimited supply), and the goal is to minimize the total energy consumed in processing all tasks. This scheduling problem can be formulated as a problem of scheduling with rejection, where rejecting a job corresponds to process it on an energy-inefficient machine and has a cost directly proportional to the processing time of the job. To solve this scheduling problem, we introduce a novel \(\frac{5}{4}(1+\epsilon )\) approximation algorithm \(\mathcal {BEKP} \) by associating it to a Multiple Subset Sum problem. Our algorithm is an improvement over the existing literature, which provides a (\(\frac{3}{2} - \frac{1}{2m}\)) approximation for scheduling with arbitrary rejection costs. We evaluate and discuss the effectiveness of our approach through a series of experiments, comparing it to existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://qarnot.com/.

  2. 2.

    https://www.plafrim.fr.

References

  1. Bartal, Y., Leonardi, S., Marchetti-Spaccamela, A., Sgall, J., Stougie, L.: Multiprocessor scheduling with rejection. SIAM J. Discret. Math. 13(1), 64–78 (2000)

    Article  MathSciNet  Google Scholar 

  2. Beaumont, O., Bouzel, R., Eyraud-Dubois, L., Korkmaz, E., Pilla, L., Van Kempen, A.: Artifact of the paper: A 1.25(1+\(\epsilon \))-Approximation Algorithm for Scheduling with Rejection Costs Proportional to Processing Times (2024). https://doi.org/10.5281/zenodo.11580038

  3. Bouzel, R., Ngoko, Y., Benoit, P., Sainthérant, N.: Distributed grid computing manager covering waste heat reuse constraints. In: 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 294–299. IEEE (2021)

    Google Scholar 

  4. Caprara, A., Kellerer, H., Pferschy, U.: A 3/4-approximation algorithm for multiple subset sum. J. Heuristics 9(2), 99–111 (2003)

    Article  Google Scholar 

  5. Cesaret, B., Oğuz, C., Sibel Salman, F.: A tabu search algorithm for order acceptance and scheduling. Comput. Oper. Res. 39(6), 1197–1205 (2012). Special Issue on Scheduling in Manufacturing Systems

    Google Scholar 

  6. Engels, D.W., Karger, D.R., Kolliopoulos, S.G., Sengupta, S., Uma, R.N., Wein, J.: Techniques for scheduling with rejection. In: Bilardi, G., Italiano, G.F., Pietracaprina, A., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 490–501. Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-68530-8_41

    Chapter  Google Scholar 

  7. Epstein, L., Noga, J., Woeginger, G.J.: On-line scheduling of unit time jobs with rejection: minimizing the total completion time. Oper. Res. Lett. 30(6), 415–420 (2002)

    Article  MathSciNet  Google Scholar 

  8. Liu, P., Lu, X.: New approximation algorithms for machine scheduling with rejection on single and parallel machine. J. Comb. Optim. 40(4), 929–952 (2020)

    Article  MathSciNet  Google Scholar 

  9. Liu, Z.: Scheduling with partial rejection. Oper. Res. Lett. 48(4), 524–529 (2020)

    Article  MathSciNet  Google Scholar 

  10. Mor, B., Shabtay, D.: Single-machine scheduling with total late work and job rejection. Comput. Ind. Eng. 169, 108168 (2022)

    Article  Google Scholar 

  11. Ou, J., Zhong, X., Wang, G.: An improved heuristic for parallel machine scheduling with rejection. Eur. J. Oper. Res. 241(3), 653–661 (2015)

    Article  MathSciNet  Google Scholar 

  12. Shabtay, D., Gaspar, N., Kaspi, M.: A survey on offline scheduling with rejection. J. Sched. 16, 3–28 (2013)

    Article  MathSciNet  Google Scholar 

  13. Slotnick, S.A.: Order acceptance and scheduling: a taxonomy and review. Eur. J. Oper. Res. 212(1), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments and Artifact Availability

Our work is done in the context of the Inria – Qarnot Pulse project: https://www.inria.fr/en/pulse. The code is available in the Zenodo repository [2] with all explanations to reproduce the results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esragul Korkmaz .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beaumont, O., Bouzel, R., Eyraud-Dubois, L., Korkmaz, E., Pilla, L., Van Kempen, A. (2024). A \(1.25(1+\epsilon )\)-Approximation Algorithm for Scheduling with Rejection Costs Proportional to Processing Times. In: Carretero, J., Shende, S., Garcia-Blas, J., Brandic, I., Olcoz, K., Schreiber, M. (eds) Euro-Par 2024: Parallel Processing. Euro-Par 2024. Lecture Notes in Computer Science, vol 14801. Springer, Cham. https://doi.org/10.1007/978-3-031-69577-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-69577-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-69576-6

  • Online ISBN: 978-3-031-69577-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics