Skip to main content

GPU-Accelerated BFS for Dynamic Networks

  • Conference paper
  • First Online:
Euro-Par 2024: Parallel Processing (Euro-Par 2024)

Abstract

The breadth-first-search (BFS) algorithm serves as a fundamental building block for graph traversal with a wide range of applications, spanning from the electronic design automation (EDA) field to social network analysis. Many contemporary real-world networks are dynamic and evolve rapidly over time. In such cases, recomputing the BFS from scratch after each graph modification becomes impractical. While parallel solutions, particularly for GPUs, have been introduced to handle the size complexity of static networks, none have addressed the issue of work-efficiency in dynamic networks. In this paper, we propose a GPU-based BFS implementation capable of processing batches of network updates concurrently. Our solution leverages batch information to minimize the total workload required to update the BFS result while also enhancing data locality for future updates. We also introduce a technique for relabeling nodes, enhancing locality during dynamic BFS traversal. We present experimental results on a diverse set of large networks with varying characteristics and batch sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Network repository. https://networkrepository.com/

  2. Suite sparse matrix collection. https://sparse.tamu.edu/

  3. Bergamini, E., Meyerhenke, H.: Fully-dynamic approximation of betweenness centrality. Lect. Notes Comput. Sci. 9294, 155–166 (2015)

    Article  MathSciNet  Google Scholar 

  4. Besta, M., Fischer, M., Kalavri, V., Kapralov, M., Hoefler, T.: Practice of streaming processing of dynamic graphs: concepts, models, and systems. IEEE Trans. Parallel Distrib. Syst. 34(6), 1860–1876 (2023)

    Article  Google Scholar 

  5. Busato, F., Green, O., Bombieri, N., Bader, D.A.: Hornet: an efficient data structure for dynamic sparse graphs and matrices on GPUs. In: 2018 IEEE High Performance Extreme Computing Conference (2018)

    Google Scholar 

  6. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms. MIT press (2009)

    Google Scholar 

  7. Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest path algorithms. ACM Trans. Algorithms 2(4), 578–601 (2006)

    Article  MathSciNet  Google Scholar 

  8. Doll, C., Hartmann, T., Wagner, D.: Fully-dynamic hierarchical graph clustering using cut trees. Lect. Notes Comput. Sci. 6844, 338–349 (2011)

    Article  MathSciNet  Google Scholar 

  9. Gaihre, A., Wu, Z., Yao, F., Liu, H.: XBFS: exploring runtime optimizations for breadth-first search on GPUs. In: Proceedings of the 28th International Symposium on High-Performance Parallel and Distributed Computing, pp. 121–131 (2019)

    Google Scholar 

  10. Green, O.: Inverse-deletion BFS-revisiting static graph BFS traversals with dynamic graph operations. In: IEEE High Performance Extreme Computing Conference (2021)

    Google Scholar 

  11. Green, O., Bader, D.A.: cuSTINGER: supporting dynamic graph algorithms for GPUs. In: IEEE High Performance Extreme Computing Conference (2016)

    Google Scholar 

  12. Grinten Van Der, A., Bergamini, E., Green, O., Bader, D.A., Meyerhenke, H.: Scalable katz ranking computation in large static and dynamic graphs. ACM J. Exper. Algorithmics 27(1) (2022)

    Google Scholar 

  13. Hong, S., Kim, S.K., Oguntebi, T., Olukotun, K.: Accelerating CUDA graph algorithms at maximum warp. In: ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 267–276 (2011)

    Google Scholar 

  14. Hsieh, C.Y., Cheng, P.H., Chang, C.M., Kuo, S.Y.: A decentralized frontier queue for improving scalability of breadth-first-search on GPUs. In: Design, Automation and Test in Europe (2023)

    Google Scholar 

  15. Krommidas, I., Zaroliagis, C.: An experimental study of algorithms for fully dynamic transitive closure. ACM J. Exp. Algorithmics 12, 1–22 (2008)

    Article  MathSciNet  Google Scholar 

  16. Luo, L., Wong, M., Hwu, W.M.: An effective GPU implementation of breadth-first search. In: Design Automation Conference, pp. 52–55 (2010)

    Google Scholar 

  17. Macko, P., Marathe, V.J., Margo, D.W., Seltzer, M.I.: Llama: efficient graph analytics using large multiversioned arrays. In: International Conference on Data Engineering, pp. 363–374 (2015)

    Google Scholar 

  18. Merrill, D., Garland, M., Grimshaw, A.: High-performance and scalable GPU graph traversal. ACM Trans. Parallel Comput. 1(2) (2015)

    Google Scholar 

  19. Todling, D., Winter, M., Steinberger, M.: Breadth-first search on dynamic graphs using dynamic parallelism on the GPU. In: 2019 IEEE High Performance Extreme Computing Conference (2019)

    Google Scholar 

  20. Wang, Y., et al.: Gunrock: GPU graph analytics. ACM Trans. Parallel Comput. 4(1), 3:1–3:49 (2017). http://escholarship.org/uc/item/9gj6r1dj

  21. Wen, H., Zhang, W.: Improving parallelism of breadth first search (BFS) algorithm for accelerated performance on GPUs. In: 2019 IEEE High Performance Extreme Computing Conference (HPEC) (2019)

    Google Scholar 

  22. Winter, M., Mlakar, D., Zayer, R., Seidel, H.P., Steinberger, M.: FaimGraph: high performance management of fully-dynamic graphs under tight memory constraints on the GPU. In: International Conference for High Performance Computing, Networking, Storage, and Analysis, pp. 754—766 (2019)

    Google Scholar 

  23. Xie, W., Tian, Y., Sismanis, Y., Balmin, A., Haas, P.J.: Dynamic interaction graphs with probabilistic edge decay. In: International Conference on Data Engineering, vol. 2015-May, pp. 1143–1154 (2015)

    Google Scholar 

  24. Zhang, G., Cheng, S., Shu, J., Hu, Q., Zheng, W.: Accelerating breadth-first graph search on a single server by dynamic edge trimming. J. Parallel Distrib. Comput. 120, 383–394 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the “PREPARE” project. (n. F/310130/05/X56 - CUP: B39J23001730005)-D.M. MiSE 31/12/2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo Ziche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ziche, F., Bombieri, N., Busato, F., Giugno, R. (2024). GPU-Accelerated BFS for Dynamic Networks. In: Carretero, J., Shende, S., Garcia-Blas, J., Brandic, I., Olcoz, K., Schreiber, M. (eds) Euro-Par 2024: Parallel Processing. Euro-Par 2024. Lecture Notes in Computer Science, vol 14803. Springer, Cham. https://doi.org/10.1007/978-3-031-69583-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-69583-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-69582-7

  • Online ISBN: 978-3-031-69583-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics