Skip to main content

FakeGuard: Novel Architecture Support for Deepfake Detection Networks

  • Conference paper
  • First Online:
Euro-Par 2024: Parallel Processing (Euro-Par 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14802))

Included in the following conference series:

  • 908 Accesses

Abstract

Deepfake technologies are evolving rapidly, the malicious or illegal uses of deepfakes have raised serious threats in societal, political, and business fields. To tackle such threats, the latest and most effective methods combine the advantages of vision transformer and CNN to detect deepfakes. However, deploying the deepfake detection networks on the existing CNN and transformer accelerators faces several critical issues such as the inefficiency and underutilization. We propose a novel accelerator architecture for deepfake detection networks, FakeGuard, which enables a cost-effective, high performance hybrid network execution. It features a flexible computing engine with reconfigurable adder tree to support for different computing patterns within a single hardware architecture. A fine-grained, dependency-free task scheduling mechanism is designed to maximize hardware resources utilization. Extensive experiments show that FakeGuard surpasses the state-of-art accelerators.

Supported by National Natural Science Foundation of China: No. 62272459 and No. 62125208.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Karras, T., et al.: Analyzing and improving the image quality of stylegan. In: CVPR (2020)

    Google Scholar 

  2. Mallya, A., et al.: Implicit warping for animation with image sets. In: NeurIPS (2022)

    Google Scholar 

  3. Shao, R., et al.: Detecting and grounding multi-modal media manipulation. In: CVPR, pp. 6904–6913 (2023)

    Google Scholar 

  4. Touvron, H., et al.: Llama: open and efficient foundation language models. CoRR (2023)

    Google Scholar 

  5. Zellers, R., et al.: Defending against neural fake news. In: NeurIPS (2019)

    Google Scholar 

  6. Chesney, B., et al.: Deep fakes: a looming challenge for privacy, democracy, and national security. Calif. L. Rev. 107, 1753 (2019)

    Google Scholar 

  7. Lin, H., et al.: Improved xception with dual attention mechanism and feature fusion for face forgery detection. In: ICDIS (2022)

    Google Scholar 

  8. Das, S., et al.: Towards solving the deepfake problem: an analysis on improving deepfake detection using dynamic face augmentation. In: CVPR (2021)

    Google Scholar 

  9. Shah, D., et al.: Xception net and vision transformer: a comparative study for deepfake detection. In: MLCSS. IEEE (2022)

    Google Scholar 

  10. Liu, T., et al.: Identification of fake stereo audio using SVM and CNN. Information 12, 263 (2021)

    Article  Google Scholar 

  11. Wodajo, D., et al.: Deepfake video detection using convolutional vision transformer. arXiv preprint arXiv:2102.11126 (2021)

  12. Kaddar, B., et al.: HCiT: deepfake video detection using a hybrid model of CNN features and vision transformer. In: VCIP, pp. 1–5. IEEE (2021)

    Google Scholar 

  13. Khan, S.A., et al.: Hybrid transformer network for deepfake detection. In: CBMI, pp. 8–14 (2022)

    Google Scholar 

  14. Wang, J., et al.: M2tr: multi-modal multi-scale transformers for deepfake detection. In: ICMR, pp. 615–623 (2022)

    Google Scholar 

  15. Coccomini, D.A., et al.: MINTIME: multi-identity size-invariant video deepfake detection. arXiv preprint arXiv:2211.10996 (2022)

  16. Report: number of expert-crafted video deepfakes double every six months. https://cybernews.com/privacy/

  17. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: ISCA, pp. 1–12 (2017)

    Google Scholar 

  18. Lu, L., et al.: Sanger: a co-design framework for enabling sparse attention using reconfigurable architecture. In: MICRO-54, pp. 977–991 (2021)

    Google Scholar 

  19. Samajdar, A., et al.: A systematic methodology for characterizing scalability of DNN accelerators using SCALE-sim. In: ISPASS (2020)

    Google Scholar 

  20. Li, S., et al.: DRAMsim3: a cycle-accurate, thermal-capable DRAM simulator. In: IEEE CAL, vol. 19 (2020)

    Google Scholar 

  21. Li, S., et al.: Cacti-p: architecture-level modeling for sram-based structures with advanced leakage reduction techniques. In: ICCAD 2011 (2011)

    Google Scholar 

  22. You, H., et al.: ViTCoD: vision transformer acceleration via dedicated algorithm and accelerator co-design. In: HPCA (2023)

    Google Scholar 

  23. Li, B., et al.: Ftrans: energy-efficient acceleration of transformers using FPGA. In: ISLOED, pp. 175–180 (2020)

    Google Scholar 

  24. Kwon, H., et al.: MAERI: enabling flexible dataflow mapping over DNN accelerators via reconfigurable interconnects. In: ASPLOS (2018)

    Google Scholar 

  25. Qin, E., et al.: Sigma: a sparse and irregular gemm accelerator with flexible interconnects for dnn training. In: HPCA, pp. 58–70. IEEE (2020)

    Google Scholar 

  26. Qin, Y., et al.: FACT: FFN-attention co-optimized transformer architecture with eager correlation prediction. In: ISCA-50, pp. 1–14 (2023)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, X., Meng, D., Hou, R., Wang, Y. (2024). FakeGuard: Novel Architecture Support for Deepfake Detection Networks. In: Carretero, J., Shende, S., Garcia-Blas, J., Brandic, I., Olcoz, K., Schreiber, M. (eds) Euro-Par 2024: Parallel Processing. Euro-Par 2024. Lecture Notes in Computer Science, vol 14802. Springer, Cham. https://doi.org/10.1007/978-3-031-69766-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-69766-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-69765-4

  • Online ISBN: 978-3-031-69766-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics