Abstract
Funnels are related to the big-valley hypothesis in combinatorial fitness landscapes. It suggests that local optima are not randomly distributed but are instead clustered around the global optimum, forming a coarse-grained global structure. Multi-funnel structures emerge when more than one cluster of local optima is present, some surrounding sub-optimal solutions. These multi-funnel landscapes can be challenging to search, as the optimisation process may get trapped in a sub-optimal funnel. We propose a characterisation of funnels in multi-objective combinatorial landscapes based on the solution ranks using non-dominated sorting, and a variation of the recent graph model of multi-objective landscapes: the compressed Pareto local optimal solution network (C-PLOS-net). Using a set of \(\rho \)mnk-landscapes, we construct and visualise monotonic C-PLOS-nets, and introduce a set of metrics to characterise the landscapes’ funnel structure. The proposed metrics are found to capture the landscape global structure, to correlate with benchmark parameters, and to explain the performance of well-established multi-objective local search and evolutionary algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. Studies in Computational Intelligence, vol. 378, pp. 161–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23229-9_8
Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4
Malan, K.M.: A survey of advances in landscape analysis for optimisation. Algorithms 14(2), 40 (2021)
Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. Soft Comput. Syst. 2002, 271–279 (2002)
Garrett, D., Dasgupta, D.: Multiobjective landscape analysis and the generalized assignment problem. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007. LNCS, vol. 5313, pp. 110–124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92695-5_9
Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., Emmerich, M.: Towards analyzing multimodality of continuous multiobjective landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_90
Daolio, F., Liefooghe, A., Verel, S., Aguirre, H.E., Tanaka, K.: Problem features versus algorithm performance on rugged multiobjective combinatorial fitness landscapes. Evol. Comput. 25(4), 555–585 (2017)
Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-aware performance prediction for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 24(6), 1063–1077 (2020)
Wales, D.J.: Energy landscapes and properties of biomolecules. Phys. Biol. 2(4), S86 (2005). https://doi.org/10.1088/1478-3975/2/4/S02
Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)
Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 477-484. Association for Computing Machinery, New York (2006)
Preuss, M.: Improved topological niching for real-valued global optimization. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 386–395. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29178-4_39
Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 265–272. ACM, New York (2015)
Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Oper. Res. Lett. 16(2), 101–113 (1994)
Hains, D.R., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space structure in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011)
Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 58–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_5
Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 555–562. ACM, New York (2008)
Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_16
Berry, R.S., Kunz, R.E.: Topography and dynamics of multidimensional interatomic potential surfaces. Phys. Rev. Lett. 74, 3951–3954 (1995)
Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)
Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_19
Liefooghe, A., Ochoa, G., Vérel, S., Derbel, B.: Pareto local optimal solutions networks with compression, enhanced visualization and expressiveness. In: Silva, S., Paquete, L. (eds.) Genetic and Evolutionary Computation Conference, GECCO, pp. 713–721. ACM (2023). https://doi.org/10.1145/3583131.3590474
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)
Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)
Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_21
Garrett, D., Dasgupta, D.: Multiobjective landscape analysis and the generalized assignment problem. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007. LNCS, vol. 5313, pp. 110–124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92695-5_9
Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)
Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_25
Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Nat. Comput. 3(1), 37–51 (2004)
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)
Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Taylor & Francis, Andover (1984)
Therneau, T., Atkinson, B.: rpart: Recursive Partitioning and Regression Trees (2023). https://CRAN.R-project.org/package=rpart, r package version 4.1.23
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ochoa, G., Liefooghe, A., Verel, S. (2024). Funnels in Multi-objective Fitness Landscapes. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15148. Springer, Cham. https://doi.org/10.1007/978-3-031-70055-2_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-70055-2_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70054-5
Online ISBN: 978-3-031-70055-2
eBook Packages: Computer ScienceComputer Science (R0)