Skip to main content

Funnels in Multi-objective Fitness Landscapes

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

Funnels are related to the big-valley hypothesis in combinatorial fitness landscapes. It suggests that local optima are not randomly distributed but are instead clustered around the global optimum, forming a coarse-grained global structure. Multi-funnel structures emerge when more than one cluster of local optima is present, some surrounding sub-optimal solutions. These multi-funnel landscapes can be challenging to search, as the optimisation process may get trapped in a sub-optimal funnel. We propose a characterisation of funnels in multi-objective combinatorial landscapes based on the solution ranks using non-dominated sorting, and a variation of the recent graph model of multi-objective landscapes: the compressed Pareto local optimal solution network (C-PLOS-net). Using a set of \(\rho \)mnk-landscapes, we construct and visualise monotonic C-PLOS-nets, and introduce a set of metrics to characterise the landscapes’ funnel structure. The proposed metrics are found to capture the landscape global structure, to correlate with benchmark parameters, and to explain the performance of well-established multi-objective local search and evolutionary algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pitzer, E., Affenzeller, M.: A comprehensive survey on fitness landscape analysis. In: Fodor, J., Klempous, R., Suárez Araujo, C.P. (eds.) Recent Advances in Intelligent Engineering Systems. Studies in Computational Intelligence, vol. 378, pp. 161–191. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-23229-9_8

    Chapter  Google Scholar 

  2. Richter, H., Engelbrecht, A. (eds.): Recent Advances in the Theory and Application of Fitness Landscapes. Emergence, Complexity and Computation. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-41888-4

  3. Malan, K.M.: A survey of advances in landscape analysis for optimisation. Algorithms 14(2), 40 (2021)

    Article  MathSciNet  Google Scholar 

  4. Knowles, J., Corne, D.: Towards landscape analyses to inform the design of a hybrid local search for the multiobjective quadratic assignment problem. Soft Comput. Syst. 2002, 271–279 (2002)

    Google Scholar 

  5. Garrett, D., Dasgupta, D.: Multiobjective landscape analysis and the generalized assignment problem. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007. LNCS, vol. 5313, pp. 110–124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92695-5_9

    Chapter  Google Scholar 

  6. Kerschke, P., Wang, H., Preuss, M., Grimme, C., Deutz, A., Trautmann, H., Emmerich, M.: Towards analyzing multimodality of continuous multiobjective landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_90

    Chapter  Google Scholar 

  7. Daolio, F., Liefooghe, A., Verel, S., Aguirre, H.E., Tanaka, K.: Problem features versus algorithm performance on rugged multiobjective combinatorial fitness landscapes. Evol. Comput. 25(4), 555–585 (2017)

    Article  Google Scholar 

  8. Liefooghe, A., Daolio, F., Verel, S., Derbel, B., Aguirre, H., Tanaka, K.: Landscape-aware performance prediction for evolutionary multiobjective optimization. IEEE Trans. Evol. Comput. 24(6), 1063–1077 (2020)

    Article  Google Scholar 

  9. Wales, D.J.: Energy landscapes and properties of biomolecules. Phys. Biol. 2(4), S86 (2005). https://doi.org/10.1088/1478-3975/2/4/S02

  10. Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard-Jones cluster. J. Chem. Phys. 110(14), 6896–6906 (1999)

    Article  Google Scholar 

  11. Lunacek, M., Whitley, D.: The dispersion metric and the CMA evolution strategy. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 477-484. Association for Computing Machinery, New York (2006)

    Google Scholar 

  12. Preuss, M.: Improved topological niching for real-valued global optimization. In: Di Chio, C., et al. (eds.) EvoApplications 2012. LNCS, vol. 7248, pp. 386–395. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29178-4_39

    Chapter  Google Scholar 

  13. Kerschke, P., Preuss, M., Wessing, S., Trautmann, H.: Detecting funnel structures by means of exploratory landscape analysis. In: Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO 2015, pp. 265–272. ACM, New York (2015)

    Google Scholar 

  14. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique for combinatorial global optimizations. Oper. Res. Lett. 16(2), 101–113 (1994)

    Article  MathSciNet  Google Scholar 

  15. Hains, D.R., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space structure in the TSP. J. Oper. Res. Soc. 62(2), 305–312 (2011)

    Article  Google Scholar 

  16. Ochoa, G., Veerapen, N.: Deconstructing the big valley search space hypothesis. In: Chicano, F., Hu, B., García-Sánchez, P. (eds.) EvoCOP 2016. LNCS, vol. 9595, pp. 58–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30698-8_5

    Chapter  Google Scholar 

  17. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’ basins and local optima networks. In: Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 555–562. ACM, New York (2008)

    Google Scholar 

  18. Ochoa, G., Veerapen, N., Daolio, F., Tomassini, M.: Understanding phase transitions with local optima networks: number partitioning as a case study. In: Hu, B., López-Ibáñez, M. (eds.) EvoCOP 2017. LNCS, vol. 10197, pp. 233–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55453-2_16

    Chapter  Google Scholar 

  19. Berry, R.S., Kunz, R.E.: Topography and dynamics of multidimensional interatomic potential surfaces. Phys. Rev. Lett. 74, 3951–3954 (1995)

    Article  Google Scholar 

  20. Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)

    Article  MathSciNet  Google Scholar 

  21. Liefooghe, A., Derbel, B., Verel, S., López-Ibáñez, M., Aguirre, H., Tanaka, K.: On pareto local optimal solutions networks. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 232–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_19

    Chapter  Google Scholar 

  22. Liefooghe, A., Ochoa, G., Vérel, S., Derbel, B.: Pareto local optimal solutions networks with compression, enhanced visualization and expressiveness. In: Silva, S., Paquete, L. (eds.) Genetic and Evolutionary Computation Conference, GECCO, pp. 713–721. ACM (2023). https://doi.org/10.1145/3583131.3590474

  23. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Boston (1989)

    Google Scholar 

  24. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  25. Jones, T., Forrest, S.: Fitness distance correlation as a measure of problem difficulty for genetic algorithms. In: International Conference on Genetic Algorithms, pp. 184–192. Morgan Kaufmann (1995)

    Google Scholar 

  26. Knowles, J., Corne, D.: Instance generators and test suites for the multiobjective quadratic assignment problem. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Thiele, L., Deb, K. (eds.) EMO 2003. LNCS, vol. 2632, pp. 295–310. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36970-8_21

    Chapter  Google Scholar 

  27. Garrett, D., Dasgupta, D.: Multiobjective landscape analysis and the generalized assignment problem. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007. LNCS, vol. 5313, pp. 110–124. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92695-5_9

    Chapter  Google Scholar 

  28. Verel, S., Liefooghe, A., Jourdan, L., Dhaenens, C.: On the structure of multiobjective combinatorial search space: MNK-landscapes with correlated objectives. Eur. J. Oper. Res. 227(2), 331–342 (2013)

    Article  MathSciNet  Google Scholar 

  29. Gansner, E.R., Koren, Y., North, S.: Graph drawing by stress majorization. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 239–250. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31843-9_25

    Chapter  Google Scholar 

  30. Laumanns, M., Thiele, L., Zitzler, E.: Running time analysis of evolutionary algorithms on a simplified multiobjective knapsack problem. Nat. Comput. 3(1), 37–51 (2004)

    Article  MathSciNet  Google Scholar 

  31. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  32. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  33. Liaw, A., Wiener, M.: Classification and regression by randomforest. R News 2(3), 18–22 (2002)

    Google Scholar 

  34. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and Regression Trees. Taylor & Francis, Andover (1984)

    Google Scholar 

  35. Therneau, T., Atkinson, B.: rpart: Recursive Partitioning and Regression Trees (2023). https://CRAN.R-project.org/package=rpart, r package version 4.1.23

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela Ochoa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ochoa, G., Liefooghe, A., Verel, S. (2024). Funnels in Multi-objective Fitness Landscapes. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15148. Springer, Cham. https://doi.org/10.1007/978-3-031-70055-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70055-2_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70054-5

  • Online ISBN: 978-3-031-70055-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics