Skip to main content

Tactile Clip: A Wearable Device for Inducing Softness Illusion Through Skin Deformation

  • Conference paper
  • First Online:
Haptics: Understanding Touch; Technology and Systems; Applications and Interaction (EuroHaptics 2024)

Abstract

We proposed the “Tactile Clip,” a device to induce an illusion of softness, and verified its effectiveness in augmenting softness perception. A Tactile Clip is a wearable device that provides circumferential-force stimulation to the feet. This force results in the deformation of the foot skin, consequently influencing the perception of softness. We conducted a psychophysical experiment using the interleaved staircase method. Twelve participants assessed foot softness by comparing the stepping sensation of the reference sample with the Tactile Clip to that of the test samples without the Tactile Clip. From the response rate, we derived a psychometric curve and bias value. The results showed a significantly positive bias in the perception, suggesting that the Tactile Clip made the flooring material feel softer than the actual softness. We consider the factors contributing to this phenomenon as a slight increase in the foot’s thickness by deformation of sole skin and/or cognitive effects due to changes in force stimulation on the side of the foot in response to stepping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Giri, G.S., Maddahi, Y., Zareinia, K.: An application-based review of haptics technology. Robotics 10(1), 29 (2021)

    Article  Google Scholar 

  2. Adilkhanov, A., Rubagotti, M., Kappassov, Z.: Haptic devices: wearability-based taxonomy and literature review. IEEE Access 10, 91923–91947 (2022)

    Article  Google Scholar 

  3. Je, S., et al.: Elevate: a walkable pin-array for large shape-changing terrains. In: Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, pp. 1–11. Online Virtual Conference (originally Yokohama, Japan) (2021). https://doi.org/10.1145/3411764.3445454

  4. Iwata, H., Yano, H., Fukushima, H., Noma, H.: Circulafloor [locomotion interface]. IEEE Comput. Graph. Appl. 25(1), 64–67 (2005)

    Article  Google Scholar 

  5. Hollerbach, J. M., Xu, Y., Christensen, R. R., Jacobsen, S. C.: Designspecifications for the second generation sarcos treadport locomotion interface. In: ASME 2000 International Mechanical Engineering Congress and Exposition, vol. 69, no. 2, pp. 1293–1298. Orlando, Florida, USA (2000). https://doi.org/10.1115/IMECE2000-2446

  6. Visell, Y., Giordano, B.L., Millet, G., Cooperstock, J.R.: Vibration influences haptic perception of surface compliance during walking. PLoS ONE 6(3), e17697 (2011)

    Article  Google Scholar 

  7. Blom, K.J., Haringer, M., Beckhaus, S.: Floor-based audio-haptic virtual collision responses. In: Joint Virtual Reality Conference ICAT - EGVE - EuroVR, pp. 57–64. Madrid, Spain (2012). https://doi.org/10.2312/EGVE/JVRC12/057-064

  8. Otaran, A., Farkhatdinov, I.: Haptic ankle platform for interactive walking in virtual reality. IEEE Trans. Vis. Comput. Graph. 28(12), 3974–3985 (2021)

    Article  Google Scholar 

  9. Teng, S., Lin, C., Chiang, C., Kuo, T., Chan, L., Huang, D.: TilePop: tile-type pop-up prop for virtual reality. In: The 32nd Annual ACM Symposium on User Interface Software and Technology, pp. 639–649. New Orleans, LA, USA (2019). https://doi.org/10.1145/3332165.3347958

  10. Chang, W., Je, S., Pahud, M., Sinclair, M.J., Bianchi, A.: Rendering perceived terrain stiffness in VR via preload variation against body-weight. IEEE Trans. Haptics 16(4), 616–621 (2023)

    Article  Google Scholar 

  11. Strohmeier, P.R., Güngör, S., Herres, L., Gudea, D., Fruchard, B., Steimle,J.: bARefoot: Generating virtual materials using motion coupled vibration in shoes. In: The 33rd Annual ACM Symposium on User Interface Software and Technology, pp. 579–593. Virtual (previously Minneapolis, Minnesota, USA) (2020).https://doi.org/10.1145/3379337.3415828

  12. Wang, Y., Truong, T.E., Chesebrough, S.W., Willemsen, P., Foreman, K.B., Merryweather, A.S., Hollerbach, J.M., Minor, M.: Augmenting virtual reality terrain display with smart shoe physical rendering: a pilot study. IEEE Trans. Haptics 14(1), 174–187 (2020)

    Article  Google Scholar 

  13. Yang, T., Son, H., Byeon, S., Gil, H., Hwang, I., Jo, G., Choi, S., Kim, S., Kim, R.: Magnetorheological fluid haptic shoes for walking in VR. IEEE Trans. Haptics 14(1), 83–94 (2020)

    Article  Google Scholar 

  14. Yokota, T., Ohtake, M., Nishimura, Y., Yui, T., Uchikura, R., Hashida, T.: Snow walking: motion-limiting device that reproduces the experience of walking in deep snow. In: 6th Augmented Human International Conference, pp. 45–48. Singapore, Singapore (2015).https://doi.org/10.1145/2735711.2735829

  15. Tanaka, Y., Sano, A., Ito, M., Fujimoto, H.: A novel tactile device considering nail function for changing capability of tactile perception. In: 6th International Conference, EuroHaptics 2008. Lecture Notes in Computer Science, vol. 5024, pp. 543-548, Madrid, Spain (2008)

    Google Scholar 

  16. Tao, Y., Teng, S., Lopes, P.: Altering perceived softness of real rigid objects by restricting fingerpad deformation. In: The 34th Annual ACM Symposium on User Interface Software and Technology, pp. 985–996. Virtual (2021).https://doi.org/10.1145/3472749.3474800

  17. Friedman, R.M., Hester, K.D., Green, B.G., Lamotte, R.H.: Magnitude estimation of softness. Exp. Brain Res. 191(2), 133–142 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by JST Moonshot R&D Program “Cybernetic being” Project (Grant number JPMJMS2013) and Inamori Research Institute for Science. We gratefully acknowledge HOTTA CARPET CO.,LTD, JAPAN CRAFT&LOCALITY ASSOCIATION, and Mitsubishi Research Institute, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hikari Yukawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yukawa, H. et al. (2025). Tactile Clip: A Wearable Device for Inducing Softness Illusion Through Skin Deformation. In: Kajimoto, H., et al. Haptics: Understanding Touch; Technology and Systems; Applications and Interaction. EuroHaptics 2024. Lecture Notes in Computer Science, vol 14768. Springer, Cham. https://doi.org/10.1007/978-3-031-70058-3_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70058-3_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70057-6

  • Online ISBN: 978-3-031-70058-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics