Skip to main content

Apparent Thermal Motion on the Forearm

  • Conference paper
  • First Online:
Haptics: Understanding Touch; Technology and Systems; Applications and Interaction (EuroHaptics 2024)

Abstract

The concept of Apparent Tactile Motion (ATM) has been extensively studied in the field of haptics, allowing people to perceive a sense of dynamic motion through tactile stimuli such as vibrations, tapping or mid-air stimuli. However, there is a lack of research on whether a similar perception of motion can be achieved using thermal stimuli. As prior research suggests that particularly the stimuli onset asynchrony (SOA) of two stimuli is a significant contributor to the perception of motion, in this study, we examine different SOAs between two warm stimuli on the forearm in order to induce a sensation of motion. Our results indicate that the sensation of motion can be achieved on the forearm with SOAs close to the signal duration. We further found a negative correlation between SOAs and the perception of speed and report findings of participants’ perceptions of motion through drawings. With our study, we strengthen the understanding of dynamic thermal feedback through apparent thermal motion that may lead to the development of lighter and more sustainable wearable thermal devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anne Cochrane, K., et al.: Body maps: a generative tool for soma-based design. In: Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 1–14 (2022). https://doi.org/10.1145/3490149.3502262

  2. Burtt, H.E.: Tactual illusions of movement. J. Exp. Psychol. 2(5), 371 (1917). https://doi.org/10.1037/h0074614

    Article  Google Scholar 

  3. Chen, Z., Peiris, R.L., Minamizawa, K.: A thermal pattern design for providing dynamic thermal feedback on the face with head mounted displays. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, pp. 381–388 (2017). https://doi.org/10.1145/3024969.3025060

  4. Chu, S.Y., Cheng, Y.T., Lin, S.C., Huang, Y.W., Chen, Y., Chen, M.Y.: Motionring: creating illusory tactile motion around the head using 360 vibrotactile headbands. In: The 34th Annual ACM Symposium on User Interface Software and Technology, pp. 724–731 (2021). https://doi.org/10.1145/3472749.3474781

  5. Geldard, F.A., Sherrick, C.E.: The cutaneous “rabbit’’: a perceptual illusion. Science 178(4057), 178–179 (1972). https://doi.org/10.1126/science.178.4057.178

    Article  Google Scholar 

  6. Gongora, D., Peiris, R.L., Minamizawa, K.: Towards intermanual apparent motion of thermal pulses. In: Adjunct Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, pp. 143–145 (2017). https://doi.org/10.1145/3131785.3131814

  7. Hachisu, T., Suzuki, K.: Tactile apparent motion through human-human physical touch. In: Haptics: Science, Technology, and Applications: 11th International Conference, EuroHaptics 2018, Pisa, Italy, June 13–16, 2018, Proceedings, Part I 11, pp. 163–174. Springer (2018). https://doi.org/10.1007/978-3-319-93445-7_15

  8. Han, P.H., et al.: Haptic around: multiple tactile sensations for immersive environment and interaction in virtual reality. In: Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology, pp. 1–10 (2018). https://doi.org/10.1145/3281505.3281507

  9. Ho, H.N., Sato, K., Kuroki, S., Watanabe, J., Maeno, T., Nishida, S.: Physical-perceptual correspondence for dynamic thermal stimulation. IEEE Trans. Haptics 10(1), 84–93 (2016). https://doi.org/10.1109/TOH.2016.2583424

    Article  Google Scholar 

  10. Israr, A., Poupyrev, I.: Tactile brush: drawing on skin with a tactile grid display. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2019–2028 (2011). https://doi.org/10.1145/1978942.1979235

  11. Israr, A., Zhao, S., Schwemler, Z., Fritz, A.: Stereohaptics toolkit for dynamic tactile experiences. In: HCI International 2019–Late Breaking Papers: 21st HCI International Conference, HCII 2019, Orlando, FL, USA, July 26–31, 2019, Proceedings 21, pp. 217–232. Springer (2019). https://doi.org/10.1007/978-3-030-30033-3_17

  12. Kasaei, S., Levesque, V.: Effect of vibration frequency mismatch on apparent tactile motion. In: 2022 IEEE Haptics Symposium (HAPTICS), pp. 1–6 (2022). 10.1109/HAPTICS52432.2022.9765602

    Google Scholar 

  13. Kirman, J.H.: Tactile apparent movement: the effects of interstimulus onset interval and stimulus duration. Percept. Psychophys. 15(1), 1–6 (1974). https://doi.org/10.3758/BF03205819

    Article  Google Scholar 

  14. Knez, I., Thorsson, S.: Influences of culture and environmental attitude on thermal, emotional and perceptual evaluations of a public square. Int. J. Biometeorol. 50, 258–268 (2006). https://doi.org/10.1007/s00484-006-0024-0

    Article  Google Scholar 

  15. Lacôte, I., Gueorguiev, D., Pacchierotti, C., Babel, M., Marchal, M.: Speed discrimination in the apparent haptic motion illusion. In: International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, pp. 48–56. Springer (2022)

    Google Scholar 

  16. Lee, D.K., McGillis, S.L., Greenspan, J.D.: Somatotopic localization of thermal stimuli: I. A comparison of within-versus across-dermatomal separation of innocuous thermal stimuli. Somatosens. Motor Res. 13(1), 67–71 (1996). https://doi.org/10.3109/08990229609028913

    Article  Google Scholar 

  17. Lue, Y.J., Wang, H.H., Cheng, K.I., Chen, C.H., Lu, Y.M.: Thermal pain tolerance and pain rating in normal subjects: gender and age effects. Eur. J. Pain 22(6), 1035–1042 (2018). https://doi.org/10.1002/ejp.1188

    Article  Google Scholar 

  18. Luo, M., Wang, Z., Zhang, H., Arens, E., Filingeri, D., Jin, L., Ghahramani, A., Chen, W., He, Y., Si, B.: High-density thermal sensitivity maps of the human body. Build. Environ. 167, 106435 (2020). https://doi.org/10.1016/j.buildenv.2019.106435

    Article  Google Scholar 

  19. Moesgen, T., Gowrishankar, R., Xiao, Y.: Designing beyond hot and cold - exploring full-body heat experiences in sauna. In: Eighteenth International Conference on Tangible, Embedded, and Embodied Interaction (TEI ’24), pp. 163–174 (2024)

    Google Scholar 

  20. Perret, J., Vander Poorten, E.: Touching virtual reality: a review of haptic gloves. In: ACTUATOR 2018; 16th International Conference on New Actuators, pp. 1–5. VDE (2018)

    Google Scholar 

  21. Pittera, D., Georgiou, O., Frier, W.: ‘I see where this is going’: a psychophysical study of directional mid-air haptics and apparent tactile motion. IEEE Trans. Haptics 16, 322–333 (2023). https://doi.org/10.1109/TOH.2023.3280263

    Article  Google Scholar 

  22. Pittera, D., Obrist, M., Israr, A.: Hand-to-hand: an intermanual illusion of movement. In: Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 73–81 (2017). https://doi.org/10.1145/3136755.3136777

  23. Shani, Y.Y., Lineykin, S.: Thermal cues composed of sequences of pulses for transferring data via a haptic thermal interface. Bioengineering 10(10), 1156 (2023). https://doi.org/10.3390/bioengineering10101156

    Article  Google Scholar 

  24. Sherrick, C.E., Rogers, R.: Apparent haptic movement. Percept. Psychophys. 1(3), 175–180 (1966). https://doi.org/10.3758/bf03210054

    Article  Google Scholar 

  25. Singhal, A., Jones, L.: Space-time dependencies and thermal perception. In: Haptics: Perception, Devices, Control, and Applications: 10th International Conference, EuroHaptics 2016, London, UK, July 4-7, 2016, Proceedings, Part I 10, pp. 291–302. Springer (2016). https://doi.org/10.1007/978-3-319-42321-0_27

  26. Takeda, T., Niijima, A., Mukouchi, T., Satou, T.: Creating illusion of wind blowing with air vortex-induced apparent tactile motion. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–7 (2020). https://doi.org/10.1145/3334480.3382811

  27. Taus, R.H., Stevens, J.C., Marks, L.E.: Spatial localization of warmth. Percept. Psychophys. 17(2), 194–196 (1975). https://doi.org/10.3758/BF03203885

    Article  Google Scholar 

  28. Tewell, J., Bird, J., Buchanan, G.R.: The heat is on: a temperature display for conveying affective feedback. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 1756–1767 (2017). https://doi.org/10.1145/3025453.3025844

  29. Valkov, D., Linsen, L.: Vibro-tactile feedback for real-world awareness in immersive virtual environments. In: 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 340–349. IEEE (2019). https://doi.org/10.1109/VR.2019.8798036

  30. Wee, C., Yap, K.M., Lim, W.N.: Haptic interfaces for virtual reality: challenges and research directions. IEEE Access 9, 112145–112162 (2021). https://doi.org/10.1109/ACCESS.2021.3103598

    Article  Google Scholar 

  31. Whitchurch, A.K.: The illusory perception of movement on the skin. Am. J. Psychol. 32(4), 472–489 (1921). https://doi.org/10.2307/1413769

    Article  Google Scholar 

  32. Wu, W., Culbertson, H.: Wearable haptic pneumatic device for creating the illusion of lateral motion on the arm. In: 2019 IEEE World Haptics Conference (WHC), pp. 193–198. IEEE (2019). https://doi.org/10.1109/WHC.2019.8816170

  33. Zhu, M., et al.: Pneusleeve: In-fabric multimodal actuation and sensing in a soft, compact, and expressive haptic sleeve. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2020). https://doi.org/10.1145/3313831.3376333

Download references

Acknowledgments

We would like to thank all study participants and particularly Yuhan Tseng and Esa Vikberg for supporting in the hardware development. We also thank Ramyah Gowrishankar for advising in the study design. This study has received funding from the European Union Horizon Europe Research and Innovation Programme under Grant Agreement No 101070533 and is part of EMIL (European Media Immersion Lab).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Moesgen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moesgen, T., Ho, HN., Xiao, Y. (2025). Apparent Thermal Motion on the Forearm. In: Kajimoto, H., et al. Haptics: Understanding Touch; Technology and Systems; Applications and Interaction. EuroHaptics 2024. Lecture Notes in Computer Science, vol 14768. Springer, Cham. https://doi.org/10.1007/978-3-031-70058-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70058-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70057-6

  • Online ISBN: 978-3-031-70058-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics