Skip to main content

Aggregated Partial Hypervolumes - An Overall Indicator for Performance Evaluation of Multimodal Multiobjective Optimization Methods

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

Multimodal multiobjective optimization (MMMOO) can be perceived as the combination of multiobjective optimization (MOO) and multimodal optimization (MMO). The performance of an MMMOO method should be thus assessed from both perspectives, leading to the prevalence of dual-metric indicators in the existing literature. This study first analyzes the ideal outcome of MMMOO for informed decision-making to determine the prerequisites of a theoretically and practically sound performance indicator. Then, it critically evaluates existing indicators, especially those that intend to measure success from the MMO perspective. Subsequently, it introduces Aggregated Partial Hypervolumes (APHVs) as a novel overall parametric performance indicator that not only addresses the drawbacks of existing ones but can also reflect the relative importance of MMO for the decision-maker. Finally, a few descriptive MMMOO examples are studied to verify that the optimal population according to APHVs matches our understanding of the ideal outcome of MMMOO, taking into account the relative importance of both the MMO and the MOO perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Purshouse, R.C., Deb, K., Mansor, M.M., Mostaghim, S., Wang, R.: A review of hybrid evolutionary multiple criteria decision making methods. In: 2014 IEEE Congress on Evolutionary Computation (CEC), pp. 1147–1154. IEEE (2014)

    Google Scholar 

  2. Tanabe, R., Ishibuchi, H.: A review of evolutionary multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 24(1), 193–200 (2019)

    Article  Google Scholar 

  3. Liang, J., Yue, C., Li, G., Qu, B., Suganthan, P., Yu, K.: Problem definitions and evaluation criteria for the CEC 2021 on multimodal multiobjective path planning optimization (2020)

    Google Scholar 

  4. Schutze, O., Vasile, M., Coello, C.A.C.: Computing the set of epsilon-efficient solutions in multiobjective space mission design. J. Aerosp. Comput. Inf. Commun. 8(3), 53–70 (2011)

    Article  Google Scholar 

  5. Preuss, M., Kausch, C., Bouvy, C., Henrich, F.: Decision space diversity can be essential for solving multiobjective real-world problems. In: Ehrgott, M., Naujoks, B., Stewart, T., Wallenius, J. (eds.) Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems. LNEMS, vol. 634. Springer, Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-04045-0_31

  6. Sebag, M., Tarrisson, N., Teytaud, O., Lefevre, J., Baillet, S.: A multi-objective multi-modal optimization approach for mining stable spatio-temporal patterns. In: IJCAI, pp. 859–864 (2005)

    Google Scholar 

  7. Hiroyasu, T., Nakayama, S., Miki, M.: Comparison study of SPEA2+, SPEA2, and NSGA-II in diesel engine emissions and fuel economy problem. In: 2005 IEEE Congress on Evolutionary Computation, vol. 1, pp. 236–242. IEEE (2005)

    Google Scholar 

  8. Das, S., Maity, S., Qu, B.-Y., Suganthan, P.N.: Real-parameter evolutionary multimodal optimization-a survey of the state-of-the-art. Swarm Evol. Comput. 1(2), 71–88 (2011)

    Article  Google Scholar 

  9. Yue, C., Qu, B., Liang, J.: A multiobjective particle swarm optimizer using ring topology for solving multimodal multiobjective problems. IEEE Trans. Evol. Comput. 22(5), 805–817 (2017)

    Article  Google Scholar 

  10. Ming, F., Gong, W., Yang, Y., Liao, Z.: Constrained multimodal multi-objective optimization: test problem construction and algorithm design. Swarm Evol. Comput. 76, 101209 (2023)

    Article  Google Scholar 

  11. Agrawal, S., Tiwari, A., Yaduvanshi, B., Rajak, P.: Differential evolution with nearest better clustering for multimodal multiobjective optimization. Appl. Soft Comput. 148, 110852 (2023)

    Article  Google Scholar 

  12. Wang, Y., Liu, Z., Wang, G.-G.: Improved differential evolution using two-stage mutation strategy for multimodal multi-objective optimization. Swarm Evol. Comput. 78, 101232 (2023)

    Article  Google Scholar 

  13. Sun, Y., Zhang, S.: A decomposition and dynamic niching distance-based dual elite subpopulation evolutionary algorithm for multimodal multiobjective optimization. Expert Syst. Appl. 231, 120738 (2023)

    Google Scholar 

  14. Zhang, X., Liu, H., Tu, L.: A modified particle swarm optimization for multimodal multi-objective optimization. Eng. Appl. Artif. Intell. 95, 103905 (2020)

    Article  Google Scholar 

  15. Li, W., Zhang, T., Wang, R., Ishibuchi, H.: Weighted indicator-based evolutionary algorithm for multimodal multiobjective optimization. IEEE Trans. Evol. Comput. 25(6), 1064–1078 (2021)

    Article  Google Scholar 

  16. Li, W., Yao, X., Li, K., Wang, R., Zhang, T., Wang, L.: Coevolutionary framework for generalized multimodal multi-objective optimization. IEEE/CAA J. Automatica Sinica 10(7), 1544–1556 (2023)

    Article  Google Scholar 

  17. Lv, Z., Li, S., Sun, H., Zhang, H.: A multimodal multi-objective evolutionary algorithm with two-stage dual-indicator selection strategy. Swarm Evol. Comput. 82, 101319 (2023)

    Google Scholar 

  18. Ji, J., Wu, T., Yang, C.: Multimodal multiobjective differential evolutionary optimization with species conservation. IEEE Trans. Syst. Man Cybern. Syst. 54(2), 1299–1311 (2023)

    Google Scholar 

  19. Ding, Z., Cao, L., Chen, L., Sun, D., Zhang, X., Tao, Z.: Large-scale multimodal multiobjective evolutionary optimization based on hybrid hierarchical clustering. Knowl.-Based Syst. 266, 110398 (2023)

    Article  Google Scholar 

  20. Zhang, W., Li, G., Zhang, W., Liang, J., Yen, G.G.: A cluster based PSO with leader updating mechanism and ring-topology for multimodal multi-objective optimization. Swarm Evol. Comput. 50, 100569 (2019)

    Article  Google Scholar 

  21. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

    Article  Google Scholar 

  22. Liang, J., et al.: A clustering-based differential evolution algorithm for solving multimodal multi-objective optimization problems. Swarm Evol. Comput. 60, 100788 (2021)

    Article  Google Scholar 

  23. Yue, C., Qu, B., Yu, K., Liang, J., Li, X.: A novel scalable test problem suite for multimodal multiobjective optimization. Swarm Evol. Comput. 48, 62–71 (2019)

    Article  Google Scholar 

  24. Zhou, T., Han, X., Wang, L., Gan, W., Chu, Y., Gao, M.: A multiobjective differential evolution algorithm with subpopulation region solution selection for global and local pareto optimal sets. Swarm Evol. Comput. 83, 101423 (2023)

    Article  Google Scholar 

  25. Yang, C., Wu, T., Ji, J.: Two-stage species conservation for multimodal multi-objective optimization with local pareto sets. Inf. Sci. 639, 118990 (2023)

    Article  Google Scholar 

  26. Xiong, M., Xiong, W., Liu, Z., Liu, Y., Han, C.: A multi-modal multi-objective evolutionary algorithm based on dual decomposition and subset selection. Swarm Evol. Comput. 84, 101431 (2023)

    Google Scholar 

  27. Liu, Y., Yen, G.G., Gong, D.: A multimodal multiobjective evolutionary algorithm using two-archive and recombination strategies. IEEE Trans. Evol. Comput. 23(4), 660–674 (2018)

    Article  Google Scholar 

  28. Liu, Y., Xu, L., Han, Y., Zeng, X., Yen, G.G., Ishibuchi, H.: Evolutionary multimodal multiobjective optimization for traveling salesman problems. IEEE Trans. Evol. Comput. 28(2), 516–530 (2023)

    Google Scholar 

  29. Zhou, T., Hu, Z., Su, Q., Xiong, W.: A clustering differential evolution algorithm with neighborhood-based dual mutation operator for multimodal multiobjective optimization. Expert Syst. Appl. 216, 119438 (2023)

    Article  Google Scholar 

  30. Zou, J., Deng, Q., Liu, Y., Yang, X., Yang, S., Zheng, J.: A dynamic-niching-based pareto domination for multimodal multiobjective optimization. IEEE Trans. Evol. Comput. (2023). https://doi.org/10.1109/TEVC.2023.3316723

  31. Zhang, J., Zou, J., Yang, S., Zheng, J.: An evolutionary algorithm based on independently evolving sub-problems for multimodal multi-objective optimization. Inf. Sci. 619, 908–929 (2023)

    Article  Google Scholar 

  32. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  33. Coello Coello, C.A., Reyes Sierra, M.: A study of the parallelization of a coevolutionary multi-objective evolutionary algorithm. In: Monroy, R., Arroyo-Figueroa, G., Sucar, L.E., Sossa, H. (eds.) MICAI 2004. LNCS (LNAI), vol. 2972, pp. 688–697. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24694-7_71

    Chapter  Google Scholar 

  34. Ishibuchi, H., Imada, R., Setoguchi, Y., Nojima, Y.: How to specify a reference point in hypervolume calculation for fair performance comparison. Evol. Comput. 26(3), 411–440 (2018)

    Article  Google Scholar 

  35. Ishibuchi, H., Imada, R., Masuyama, N., Nojima, Y.: Comparison of hypervolume, IGD and IGD+ from the viewpoint of optimal distributions of solutions. In: Deb, K., et al. (eds.) EMO 2019. LNCS, vol. 11411, pp. 332–345. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12598-1_27

    Chapter  Google Scholar 

  36. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified distance calculation in generational distance and inverted generational distance. In: Gaspar-Cunha, A., Henggeler Antunes, C., Coello, C.C. (eds.) EMO 2015. LNCS, vol. 9019, pp. 110–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15892-1_8

    Chapter  Google Scholar 

  37. Tsou, C.-S., Fang, H.-H., Chang, H.-H., Kao, C.-H.: An improved particle swarm pareto optimizer with local search and clustering. In: Wang, T.-D., et al. (eds.) SEAL 2006. LNCS, vol. 4247, pp. 400–407. Springer, Heidelberg (2006). https://doi.org/10.1007/11903697_51

    Chapter  Google Scholar 

  38. Liang, J.-J., Qu, B., Gong, D., Yue, C.: Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization. Comput. Intell. Lab. 353–370 (2019). Zhengzhou University, Technical Report 201912

    Google Scholar 

Download references

Acknowledgement

This research has been funded by the Australian Research Council Discovery Early Career Researcher Award DE230101281. Computational resources for this study were provided by the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Ahrari .

Editor information

Editors and Affiliations

Ethics declarations

Disclosure of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahrari, A., Sarker, R., Coello, C. (2024). Aggregated Partial Hypervolumes - An Overall Indicator for Performance Evaluation of Multimodal Multiobjective Optimization Methods. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15149. Springer, Cham. https://doi.org/10.1007/978-3-031-70068-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70068-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70067-5

  • Online ISBN: 978-3-031-70068-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics