Abstract
Optimization problems in dynamic environments have recently been the source of several theoretical studies. One of these problems is the monotonic Dynamic Binary Value problem, which theoretically has high discriminatory power between different Genetic Algorithms. Given this theoretical foundation, we integrate several versions of this problem into the IOHprofiler benchmarking framework. Using this integration, we perform several large-scale benchmarking experiments to both recreate theoretical results on moderate dimensional problems and investigate aspects of GA’s performance which have not yet been studied theoretically. Our results highlight some of the many synergies between theory and benchmarking and offer a platform through which further research into dynamic optimization problems can be performed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Branke, J.: Evolutionary optimization in dynamic environments, vol. 3. Springer Science & Business Media (2012)
Clément, F., Vermetten, D., De Nobel, J., Jesus, A.D., Paquete, L., Doerr, C.: Computing star discrepancies with numerical black-box optimization algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1330–1338 (2023)
Dang, D.C., Jansen, T., Lehre, P.K.: Populations can be essential in tracking dynamic optima. Algorithmica 78, 660–680 (2017)
Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking discrete optimization heuristics with IOHprofiler. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1798–1806 (2019)
Janett, D., Lengler, J.: Two-dimensional drift analysis: optimizing two functions simultaneously can be hard. Theoret. Comput. Sci. 971, 114072 (2023)
Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-Boolean function. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 113–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_12
Lehre, P.K., Qin, X.: Self-adaptation can help evolutionary algorithms track dynamic optima. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1619–1627 (2023)
Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)
Lengler, J.: Synergizing theory and practice of automated algorithm design for optimization (Dagstuhl Seminar 23332). Dagstuhl Rep. 13(8), 46–70 (2024). https://doi.org/10.4230/DagRep.13.8.46
Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone functions: an entropy compression argument. In: 2019 Proceedings of the Sixteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 94–102. SIAM (2019)
Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments. Nat. Comput. 23(1), 1–15 (2022)
Lengler, J., Riedi, S.: Runtime analysis of the (\(\mu \)+ 1)-EA on the dynamic binval function. Evol. Comput. Comb. Optim. 12692, 84–99 (2021)
Lengler, J., Schaller, U.: The (1+1)-EA on noisy linear functions with random positive weights. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 712–719. IEEE (2018)
Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27(4), 643–666 (2018)
Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (\(\mu \)+ 1)-EA on monotone functions. In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, pp. 87–101 (2019)
Lissovoi, A., Witt, C.: Runtime analysis of ant colony optimization on dynamic shortest path problems. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1605–1612 (2013)
Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in dynamic optimization. Algorithmica 78, 641–659 (2017)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Neumann, F., et al.: Benchmarking algorithms for submodular optimization problems using IOHProfiler. CoRR abs/2302.01464 (2023). https://doi.org/10.48550/arXiv.2302.01464
Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms in dynamic and stochastic environments. In: Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 323–357 (2020)
Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)
de Nobel, J., Ye, F., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: IOHexperimenter: Benchmarking platform for iterative optimization heuristics. CoRR abs/2111.04077 (2021). https://arxiv.org/abs/2111.04077
van Stein, N., Vermetten, D., Kononova, A.V., Bäck, T.: Explainable benchmarking for iterative optimization heuristics (2024). arXiv preprint arXiv:2401.17842
Vermetten, D., Lengler, J., Rusin, D., Bäck, T., Doerr, C.: Reproducibility files and additional figures (2024), code and data repository (Zenodo): https://doi.org/10.5281/zenodo.10964455 Figure repository (Figshare): https://doi.org/10.6084/m9.figshare.25592904
Wang, H., Vermetten, D., Ye, F., Doerr, C., Bäck, T.: IOHanalyzer: detailed performance analysis for iterative optimization heuristic. ACM Trans. Evol. Learn. Optim. 2(1), 3:1–3:29 (2022). https://doi.org/10.1145/3510426, https://doi.org/10.1145/3510426, IOHanalyzer is available at CRAN, on GitHub, and as web-based GUI, see https://iohprofiler.github.io/IOHanalyzer/ for links
Acknowledgments
This work was supported by CNRS Sciences informatiques via the AAP project IOHprofiler. It was initiated at the Dagstuhl seminar 23332.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Vermetten, D., Lengler, J., Rusin, D., Bäck, T., Doerr, C. (2024). Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15149. Springer, Cham. https://doi.org/10.1007/978-3-031-70068-2_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-70068-2_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70067-5
Online ISBN: 978-3-031-70068-2
eBook Packages: Computer ScienceComputer Science (R0)