Skip to main content

Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Abstract

Optimization problems in dynamic environments have recently been the source of several theoretical studies. One of these problems is the monotonic Dynamic Binary Value problem, which theoretically has high discriminatory power between different Genetic Algorithms. Given this theoretical foundation, we integrate several versions of this problem into the IOHprofiler benchmarking framework. Using this integration, we perform several large-scale benchmarking experiments to both recreate theoretical results on moderate dimensional problems and investigate aspects of GA’s performance which have not yet been studied theoretically. Our results highlight some of the many synergies between theory and benchmarking and offer a platform through which further research into dynamic optimization problems can be performed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Branke, J.: Evolutionary optimization in dynamic environments, vol. 3. Springer Science & Business Media (2012)

    Google Scholar 

  2. Clément, F., Vermetten, D., De Nobel, J., Jesus, A.D., Paquete, L., Doerr, C.: Computing star discrepancies with numerical black-box optimization algorithms. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1330–1338 (2023)

    Google Scholar 

  3. Dang, D.C., Jansen, T., Lehre, P.K.: Populations can be essential in tracking dynamic optima. Algorithmica 78, 660–680 (2017)

    Article  MathSciNet  Google Scholar 

  4. Doerr, C., Ye, F., Horesh, N., Wang, H., Shir, O.M., Bäck, T.: Benchmarking discrete optimization heuristics with IOHprofiler. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 1798–1806 (2019)

    Google Scholar 

  5. Janett, D., Lengler, J.: Two-dimensional drift analysis: optimizing two functions simultaneously can be hard. Theoret. Comput. Sci. 971, 114072 (2023)

    Article  MathSciNet  Google Scholar 

  6. Kötzing, T., Molter, H.: ACO beats EA on a dynamic pseudo-Boolean function. In: Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) PPSN 2012. LNCS, vol. 7491, pp. 113–122. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32937-1_12

    Chapter  Google Scholar 

  7. Lehre, P.K., Qin, X.: Self-adaptation can help evolutionary algorithms track dynamic optima. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1619–1627 (2023)

    Google Scholar 

  8. Lengler, J.: A general dichotomy of evolutionary algorithms on monotone functions. IEEE Trans. Evol. Comput. 24(6), 995–1009 (2019)

    Article  Google Scholar 

  9. Lengler, J.: Synergizing theory and practice of automated algorithm design for optimization (Dagstuhl Seminar 23332). Dagstuhl Rep. 13(8), 46–70 (2024). https://doi.org/10.4230/DagRep.13.8.46

  10. Lengler, J., Martinsson, A., Steger, A.: When does hillclimbing fail on monotone functions: an entropy compression argument. In: 2019 Proceedings of the Sixteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO), pp. 94–102. SIAM (2019)

    Google Scholar 

  11. Lengler, J., Meier, J.: Large population sizes and crossover help in dynamic environments. Nat. Comput. 23(1), 1–15 (2022)

    Google Scholar 

  12. Lengler, J., Riedi, S.: Runtime analysis of the (\(\mu \)+ 1)-EA on the dynamic binval function. Evol. Comput. Comb. Optim. 12692, 84–99 (2021)

    MathSciNet  Google Scholar 

  13. Lengler, J., Schaller, U.: The (1+1)-EA on noisy linear functions with random positive weights. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 712–719. IEEE (2018)

    Google Scholar 

  14. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27(4), 643–666 (2018)

    Article  MathSciNet  Google Scholar 

  15. Lengler, J., Zou, X.: Exponential slowdown for larger populations: the (\(\mu \)+ 1)-EA on monotone functions. In: Proceedings of the 15th ACM/SIGEVO Conference on Foundations of Genetic Algorithms, pp. 87–101 (2019)

    Google Scholar 

  16. Lissovoi, A., Witt, C.: Runtime analysis of ant colony optimization on dynamic shortest path problems. In: Proceedings of the 15th Annual Conference on Genetic and Evolutionary Computation, pp. 1605–1612 (2013)

    Google Scholar 

  17. Lissovoi, A., Witt, C.: A runtime analysis of parallel evolutionary algorithms in dynamic optimization. Algorithmica 78, 641–659 (2017)

    Article  MathSciNet  Google Scholar 

  18. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  19. Neumann, F., et al.: Benchmarking algorithms for submodular optimization problems using IOHProfiler. CoRR abs/2302.01464 (2023). https://doi.org/10.48550/arXiv.2302.01464

  20. Neumann, F., Pourhassan, M., Roostapour, V.: Analysis of evolutionary algorithms in dynamic and stochastic environments. In: Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 323–357 (2020)

    Google Scholar 

  21. Nguyen, T.T., Yang, S., Branke, J.: Evolutionary dynamic optimization: a survey of the state of the art. Swarm Evol. Comput. 6, 1–24 (2012)

    Article  Google Scholar 

  22. de Nobel, J., Ye, F., Vermetten, D., Wang, H., Doerr, C., Bäck, T.: IOHexperimenter: Benchmarking platform for iterative optimization heuristics. CoRR abs/2111.04077 (2021). https://arxiv.org/abs/2111.04077

  23. van Stein, N., Vermetten, D., Kononova, A.V., Bäck, T.: Explainable benchmarking for iterative optimization heuristics (2024). arXiv preprint arXiv:2401.17842

  24. Vermetten, D., Lengler, J., Rusin, D., Bäck, T., Doerr, C.: Reproducibility files and additional figures (2024), code and data repository (Zenodo): https://doi.org/10.5281/zenodo.10964455 Figure repository (Figshare): https://doi.org/10.6084/m9.figshare.25592904

  25. Wang, H., Vermetten, D., Ye, F., Doerr, C., Bäck, T.: IOHanalyzer: detailed performance analysis for iterative optimization heuristic. ACM Trans. Evol. Learn. Optim. 2(1), 3:1–3:29 (2022). https://doi.org/10.1145/3510426, https://doi.org/10.1145/3510426, IOHanalyzer is available at CRAN, on GitHub, and as web-based GUI, see https://iohprofiler.github.io/IOHanalyzer/ for links

Download references

Acknowledgments

This work was supported by CNRS Sciences informatiques via the AAP project IOHprofiler. It was initiated at the Dagstuhl seminar 23332.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diederick Vermetten .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vermetten, D., Lengler, J., Rusin, D., Bäck, T., Doerr, C. (2024). Empirical Analysis of the Dynamic Binary Value Problem with IOHprofiler. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15149. Springer, Cham. https://doi.org/10.1007/978-3-031-70068-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70068-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70067-5

  • Online ISBN: 978-3-031-70068-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics