Abstract
Feature Encapsulation by Stages (FES) is a recently proposed mechanism that can be implemented in any Evolutionary Computation (EC) metaheuristic. Encapsulation occurs via input space expansion in several stages by adding the best individual so far as an additional input. FES has been shown to perform well in training Boolean problems. This paper extends FES to the regression domain. Grammatical Evolution (GE), a branch of Genetic Programming (GP), supports the implementation of the FES approach by enabling the investigation of performance across various search guides expressed in the grammar. We conduct experiments on both synthetic and real-world symbolic regression problems, including multi-target issues. Additionally, we study several FES-based approaches utilising the best selection process for each problem, choosing between tournament, \(\epsilon \)-Lexicase, and \(\epsilon \hbox {-}\textrm{Lexi}^2\). Statistical tests on unseen subsets’ results show that FES outperforms the standard baseline in all problems. Furthermore, we analyse individual complexity across generations, showing that populations utilising FES consist of simpler individuals, thereby reducing computational costs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aha, D.: UCI Machine Learning Repository (1987). https://archive.ics.uci.edu/ml/datasets.php
Batista, J.E., Silva, S.: Comparative study of classifier performance using automatic feature construction by M3GP. In: 2022 IEEE Congress on Evolutionary Computation (CEC), Padua, Italy, pp. 1–8. IEEE (2022). https://doi.org/10.1109/CEC55065.2022.9870343
Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 22–30. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_5
Goldberg, D.E., Deb, K.: A comparative analysis of selection schemes used in genetic algorithms. In: RAWLINS, G.J. (ed.) Foundations of Genetic Algorithms, Foundations of Genetic Algorithms, San Francisco, vol. 1, pp. 69–93. Elsevier (1991). https://doi.org/10.1016/B978-0-08-050684-5.50008-2. https://www.sciencedirect.com/science/article/pii/B9780080506845500082
Gupt, K.K., Kshirsagar, M., Dias, D.M., Sullivan, J.P., Ryan, C.: A novel ml-driven test case selection approach for enhancing the performance of grammatical evolution (2023)
Herbold, S.: Autorank: a python package for automated ranking of classifiers. J. Open Source Softw. 5(48), 2173 (2020). https://doi.org/10.21105/joss.02173
Keijzer, M., Ryan, C., Cattolico, M.: Run transferable libraries — learning functional bias in problem domains. In: Deb, K. (ed.) GECCO 2004. LNCS, vol. 3103, pp. 531–542. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24855-2_63
Koza, J.R.: Genetic Programming, 1st edn. MIT Press, Cambridge (1992)
Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Reuse, parameterized reuse, and hierarchical reuse of substructures in evolving electrical circuits using genetic programming. In: Higuchi, T., Iwata, M., Liu, W. (eds.) ICES 1996. LNCS, vol. 1259, pp. 312–326. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63173-9_56
La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. In: Proceedings of the Genetic and Evolutionary Computation Conference 2016, GECCO 2016, pp. 741–748. Association for Computing Machinery, New York (2016). https://doi.org/10.1145/2908812.2908898
de Lima, A., Carvalho, S., Dias, D.M., Naredo, E., Sullivan, J.P., Ryan, C.: Grape: grammatical algorithms in python for evolution. Signals 3(3), 642–663 (2022). https://doi.org/10.3390/signals3030039
de Lima, A., Carvalho, S., Dias, D.M., Naredo, E., Sullivan, J.P., Ryan, C.: \({\rm Lexi}^2\): lexicase selection with lexicographic parsimony pressure. In: Proceedings of the Genetic and Evolutionary Computation Conference, GECCO 2022, pp. 929–937. Association for Computing Machinery, New York (2022). https://doi.org/10.1145/3512290.3528803
Liu, H., Cai, J., Ong, Y.S.: Remarks on multi-output gaussian process regression. Knowl.-Based Syst. 144, 102–121 (2018). https://doi.org/10.1016/j.knosys.2017.12.034. https://www.sciencedirect.com/science/article/pii/S0950705117306123
Mastelini, S.M., Santana, E.J., Cerri, R., Barbon, S.: Dstars: a multi-target deep structure for tracking asynchronous regressor stacking. Appl. Soft Comput. 91, 106215 (2020). https://doi.org/10.1016/j.asoc.2020.106215. https://www.sciencedirect.com/science/article/pii/S1568494620301551
McDermott, J., et al.: Genetic programming needs better benchmarks. In: Proceedings of the 14th Annual Conference on Genetic and Evolutionary Computation, GECCO 2012, pp. 791–798. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2330163.2330273
Medernach, D., Fitzgerald, J., Azad, R.M.A., Ryan, C.: Wave: a genetic programming approach to divide and conquer. In: Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO Companion 2015, pp. 1435–1436. Association for Computing Machinery, New York (2015). https://doi.org/10.1145/2739482.2764659
Murphy, A., Ryan, C.: Improving module identification and use in grammatical evolution. In: 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, pp. 1–7. IEEE (2020). https://doi.org/10.1109/CEC48606.2020.9185571
Reyes, D.: BDS Group repository (2023). https://github.com/bdsul/fes
Reyes, D., de Lima, A., Murphy, A., Dias, D.M., Ryan, C.: Feature encapsulation by stages using grammatical evolution. In: Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO 2024 (2024). https://doi.org/10.1145/3638530.3654097
Ryan, C., Azad, R.M.A.: Sensible initialisation in grammatical evolution. In: Barry, A.M. (ed.) GECCO 2003: Proceedings of the Bird of a Feather Workshops, Genetic and Evolutionary Computation Conference, Chigaco, pp. 142–145. AAAI (2003)
Ryan, C., Collins, J.J., Neill, M.O.: Grammatical evolution: evolving programs for an arbitrary language. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 83–96. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055930
Spector, L.: Assessment of problem modality by differential performance of lexicase selection in genetic programming: a preliminary report. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, GECCO 2012, pp. 401–408. Association for Computing Machinery, New York (2012). https://doi.org/10.1145/2330784.2330846
Spyromitros-Xioufis, E., Tsoumakas, G., Groves, W., Vlahavas, I.: Multi-target regression via input space expansion: treating targets as inputs. Mach. Learn. 104(1), 55–98 (2016). https://doi.org/10.1007/s10994-016-5546-z
Vlachos, P.: StatLib-Datasets Archive (1987). https://lib.stat.cmu.edu/datasets/
Xia, Y., Chen, K., Yang, Y.: Multi-label classification with weighted classifier selection and stacked ensemble. Inf. Sci. 557, 421–442 (2021). https://doi.org/10.1016/j.ins.2020.06.017. https://www.sciencedirect.com/science/article/pii/S0020025520306058
Acknowledgments
This publication has emanated from research conducted with the financial support of Science Foundation Ireland under Grant number 16/IA/4605.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Ethics declarations
Disclosure of Interest
The authors have seen and agree with the contents of the manuscript and they declare that they have no conflict of interest.
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Reyes Fernández de Bulnes, D., de Lima, A., Galván, E., Ryan, C. (2024). Feature Encapsulation by Stages in the Regression Domain Using Grammatical Evolution. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15149. Springer, Cham. https://doi.org/10.1007/978-3-031-70068-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-70068-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70067-5
Online ISBN: 978-3-031-70068-2
eBook Packages: Computer ScienceComputer Science (R0)