Skip to main content

py_ciu_image: A Python Library for Explaining Image Classification with Contextual Importance and Utility

  • Conference paper
  • First Online:
Explainable and Transparent AI and Multi-Agent Systems (EXTRAAMAS 2024)

Abstract

Contextual Importance and Utility (CIU) is a model-agnostic method for explaining outcomes of AI systems. CIU has succeeded in producing meaningful explanations where state-of-the-art methods fail, e.g. for detecting bleeding in gastroenterological images. This paper presents a Python implementation of CIU for explaining image classifications.

The work is partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/KaryFramling/ciu.image.

  2. 2.

    \(\phi _{0}\) can also be different for every \({\{i\}}\).

References

  1. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  2. Främling, K.: Les réseaux de neurones comme outils d’aide à la décision floue. D.E.A. thesis, INSA de Lyon, July 1992

    Google Scholar 

  3. Främling, K.: Explaining results of neural networks by contextual importance and utility. In: Andrews, R., Diederich, J. (eds.) Rules and networks: Proceedings of the Rule Extraction from Trained Artificial Neural Networks Workshop, AISB’96 conference. Brighton, UK, 1-2 April 1996

    Google Scholar 

  4. Främling, K.: Modélisation et apprentissage des préférences par réseaux de neurones pour l’aide à la décision multicritère. Phd thesis, INSA de Lyon (Mar 1996)

    Google Scholar 

  5. Främling, K.: Feature importance versus feature influence and what it signifies for explainable AI. In: Explainable artificial intelligence : First world conference, xAI 2023 Lisbon, Portugal, july 26–28, 2023 proceedings, part I. Communications in Computer and Information Science, vol. 1901, pp. 241–259 (2023)

    Google Scholar 

  6. Främling, K., Knapič, S., Malhi, A.: ciu.image: an R package for explaining image classification with contextual importance and utility. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems, pp. 55–62. Springer International Publishing, Cham (2021)

    Google Scholar 

  7. Knapič, S., Malhi, A., Saluja, R., Främling, K.: Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain. Mach. Learn. Knowl. Extraction 3(3), 740–770 (2021)

    Article  Google Scholar 

  8. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017)

    Google Scholar 

  9. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 818–833. Springer, Cham (2014)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kary Främling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Främling, K., Apopei, IV., Pihlgren, G.G., Malhi, A. (2024). py_ciu_image: A Python Library for Explaining Image Classification with Contextual Importance and Utility. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2024. Lecture Notes in Computer Science(), vol 14847. Springer, Cham. https://doi.org/10.1007/978-3-031-70074-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70074-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70073-6

  • Online ISBN: 978-3-031-70074-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics