Abstract
Contextual Importance and Utility (CIU) is a model-agnostic method for explaining outcomes of AI systems. CIU has succeeded in producing meaningful explanations where state-of-the-art methods fail, e.g. for detecting bleeding in gastroenterological images. This paper presents a Python implementation of CIU for explaining image classifications.
The work is partially supported by the Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
\(\phi _{0}\) can also be different for every \({\{i\}}\).
References
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2274–2282 (2012)
Främling, K.: Les réseaux de neurones comme outils d’aide à la décision floue. D.E.A. thesis, INSA de Lyon, July 1992
Främling, K.: Explaining results of neural networks by contextual importance and utility. In: Andrews, R., Diederich, J. (eds.) Rules and networks: Proceedings of the Rule Extraction from Trained Artificial Neural Networks Workshop, AISB’96 conference. Brighton, UK, 1-2 April 1996
Främling, K.: Modélisation et apprentissage des préférences par réseaux de neurones pour l’aide à la décision multicritère. Phd thesis, INSA de Lyon (Mar 1996)
Främling, K.: Feature importance versus feature influence and what it signifies for explainable AI. In: Explainable artificial intelligence : First world conference, xAI 2023 Lisbon, Portugal, july 26–28, 2023 proceedings, part I. Communications in Computer and Information Science, vol. 1901, pp. 241–259 (2023)
Främling, K., Knapič, S., Malhi, A.: ciu.image: an R package for explaining image classification with contextual importance and utility. In: Calvaresi, D., Najjar, A., Winikoff, M., Främling, K. (eds.) Explainable and Transparent AI and Multi-Agent Systems, pp. 55–62. Springer International Publishing, Cham (2021)
Knapič, S., Malhi, A., Saluja, R., Främling, K.: Explainable Artificial Intelligence for Human Decision Support System in the Medical Domain. Mach. Learn. Knowl. Extraction 3(3), 740–770 (2021)
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc. (2017)
Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) Computer Vision - ECCV 2014, pp. 818–833. Springer, Cham (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Främling, K., Apopei, IV., Pihlgren, G.G., Malhi, A. (2024). py_ciu_image: A Python Library for Explaining Image Classification with Contextual Importance and Utility. In: Calvaresi, D., et al. Explainable and Transparent AI and Multi-Agent Systems. EXTRAAMAS 2024. Lecture Notes in Computer Science(), vol 14847. Springer, Cham. https://doi.org/10.1007/978-3-031-70074-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-70074-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-70073-6
Online ISBN: 978-3-031-70074-3
eBook Packages: Computer ScienceComputer Science (R0)