Skip to main content

Satellite Resource Scheduling: Compaction Strategies for Genetic Algorithm Schedulers

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVIII (PPSN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15151))

Included in the following conference series:

  • 362 Accesses

Abstract

The United States Naval Research Laboratory is currently using permutation-based genetic algorithms for large-scale satellite resource scheduling. This is a real-world, deployed application. The permutations must be mapped to a Gantt chart representing the final schedule. How this mapping is done can have a significant impact on the ability of the search algorithm to discover high-quality solutions. We present new work that uses compaction strategies in combination with genetic algorithms to construct less fragmented schedules. A schedule with “fewer holes” should also translate into better resource utilization. We show that this is indeed the case. This work is impactful because this strategy can be used to improve all genetic algorithm schedulers .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barbulescu, L., Watson, J., Whitley, D., Howe, A.: Scheduling space–ground communications for the air force satellite control network. J. Sched. 7(1), 7–34 (2004). https://doi.org/10.1023/B:JOSH.0000013053.32600.3c

    Article  Google Scholar 

  2. Barbulescu, L., Howe, A.E., Whitley, L.D., Roberts, M.: Understanding algorithm performance on an oversubscribed scheduling application. J. Artif. Intell. Res. 27, 577–615 (2006)

    Article  Google Scholar 

  3. Barbulescu, L., Whitley, L.D., Howe, A.E.: Leap before you look: an effective strategy in an oversubscribed scheduling problem. In: Proceedings of the 19th conference on Artificial Intelligence, pp. 143–148 (2004)

    Google Scholar 

  4. Chen, H., Luo, Z., Peng, S., Wu, J., Li, J.: HiPGen: an approach for fast generation of multi-satellite observation plans via a hierarchical multi-channel transformer network. Adv. Space Res. 69(8), 3103–3116 (2022). https://doi.org/10.1016/j.asr.2022.01.037

    Article  Google Scholar 

  5. Chen, X., Reinelt, G., Dai, G., Spitz, A.: A mixed integer linear programming model for multi-satellite scheduling. Eur. J. Oper. Res. 275(2), 694–707 (2019). https://doi.org/10.1016/j.ejor.2018.11.058

    Article  MathSciNet  Google Scholar 

  6. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  7. Davis, L.: Job shop scheduling with genetic algorithms. In: Grefenstette, J. (ed.) Int’l. Conf. on GAs and Their Applications, pp. 136–140 (1985)

    Google Scholar 

  8. Goh, E., Venkataram, H.S., Hoffmann, M., Johnston, M.D., Wilson, B.: Scheduling the NASA deep space network with deep reinforcement learning. In: 2021 IEEE Aerospace Conference (50100), pp. 1–10. IEEE, Big Sky, MT, USA (Mar 2021). https://doi.org/10.1109/AERO50100.2021.9438519, https://ieeexplore.ieee.org/document/9438519/

  9. Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley, Reading, MA (1989)

    Google Scholar 

  10. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)

    Google Scholar 

  11. Kolici, V., Herrero, X., Xhafa, F., Barolli, L.: Local search and genetic algorithms for satellite scheduling problems. In: 2013 Eighth International Conference on Broadband and Wireless Computing, Communication and Applications, pp. 328–335. IEEE, Compiegne, France (Oct 2013). https://doi.org/10.1109/BWCCA.2013.58, http://ieeexplore.ieee.org/document/6690906/

  12. Li, S., Yu, Q., Ding, H.: Reviews and prospects in satellite range scheduling problem. Auton. Intell. Syst. 3(1), 9 (2023). https://doi.org/10.1007/s43684-023-00054-6

    Article  Google Scholar 

  13. Linares, L., Vazquez, R., Perea, F., Galán-Vioque, J.: A mixed integer linear programming model for resolution of the antenna-satellite scheduling problem. In: IEEE Transactions on Aerospace and Electronic Systems, pp. 1–13 (2023). https://doi.org/10.1109/TAES.2023.3326422

  14. Liu, Q., Li, S., Zhang, P., Liu, F.: Research on satellite communication resource scheduling method based on adaptive genetic algorithm. In: 2023 4th International Symposium on Computer Engineering and Intelligent Communications (ISCEIC), pp. 382–388. IEEE, Nanjing, China (Aug 2023). https://doi.org/10.1109/ISCEIC59030.2023.10271164, https://ieeexplore.ieee.org/document/10271164/

  15. Liu, Z., Feng, Z., Ren, Z.: Route-reduction-based dynamic programming for large-scale satellite range scheduling problem. Eng. Optim. 51(11), 1944–1964 (2019). https://doi.org/10.1080/0305215X.2018.1558445

    Article  MathSciNet  Google Scholar 

  16. Niu, X., Tang, H., Wu, L.: Satellite scheduling of large areal tasks for rapid response to natural disaster using a multi-objective genetic algorithm. Int. J. Disaster Risk Reduction 28, 813–825 (2018). https://doi.org/10.1016/j.ijdrr.2018.02.013

    Article  Google Scholar 

  17. Peng, G., Song, G., Xing, L., Gunawan, A., Vansteenwegen, P.: An exact algorithm for agile earth observation satellite scheduling with time-dependent profits. Comput. Oper. Res. 120, 104946 (2020). https://doi.org/10.1016/j.cor.2020.104946

    Article  MathSciNet  Google Scholar 

  18. Radcliffe, N., Surry, P.: Fitness variance of formae and performance predictions. In: Whitley, D., Vose, M. (eds.) FOGA - 3, pp. 51–72. Morgan Kaufmann (1995)

    Google Scholar 

  19. Stottler, R., Richards, R.: Managed intelligent deconfliction and scheduling for satellite communication. In: 2018 IEEE Aerospace Conference, pp. 1–7. IEEE, Big Sky, MT (Mar 2018). https://doi.org/10.1109/AERO.2018.8396654, https://ieeexplore.ieee.org/document/8396654/

  20. Syswerda, G.: Schedule optimization using genetic algorithms. In: Davis, L. (ed.) Handbook of Genetic Algorithms, pp. 332–349. Van Nostrand Reinhold, New York, NY (January (1991)

    Google Scholar 

  21. Syswerda, G., Palmucci, J.: The application of genetic algorithms to resource scheduling. In: Booker, L., Belew, R. (eds.) Proc. of the 4th Int’l. Conf. on GAs. Morgan Kaufmann (1991)

    Google Scholar 

  22. Tormos, P.., Lova, A.., Barber, F.., Ingolotti, L.., Abril, M.., Salido, M.. A..: A genetic algorithm for railway scheduling problems. In: Xhafa, F., Abraham, A. (eds.) Metaheuristics for scheduling in industrial and manufacturing applications, pp. 255–276. Springer Berlin Heidelberg, Berlin, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78985-7_10

    Chapter  Google Scholar 

  23. Whitley, D., Quevedo De Carvalho, O., Roberts, M., Shetty, V., Jampathom, P.: Scheduling multi-resource satellites using genetic algorithms and permutation based representations. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1473–1481. ACM (2023)

    Google Scholar 

  24. Whitley, D., Starkweather, T., Fuquay, D.: Scheduling problems and traveling salesmen: the genetic edge recombination operator. In: Schaffer, J.D. (ed.) Proc. of the 3rd Int’l. Conf. on GAs. Morgan Kaufmann (1989)

    Google Scholar 

  25. Whitley, L.D., Starkweather, T., Shaner, D.: The traveling salesman and sequence scheduling: quality solutions using genetic edge recombination. In: Davis, L. (ed.) Handbook of Genetic Algorithms, chap. 22, pp. 350–372. Van Nostrand Reinhold, New York (1991)

    Google Scholar 

  26. Xu, Y., Liu, X., He, R., Chen, Y.: Multi-satellite scheduling framework and algorithm for very large area observation. Acta Astronaut. 167, 93–107 (2020). https://doi.org/10.1016/j.actaastro.2019.10.041

    Article  Google Scholar 

  27. Zhang, J., Xing, L.: An improved genetic algorithm for the integrated satellite imaging and data transmission scheduling problem. Comput. Oper. Res. 139, 105626 (2022). https://doi.org/10.1016/j.cor.2021.105626

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darrell Whitley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 This is a U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Whitley, D., de Carvalho, O.Q., Roberts, M., Shetty, V., Jampathom, P. (2024). Satellite Resource Scheduling: Compaction Strategies for Genetic Algorithm Schedulers. In: Affenzeller, M., et al. Parallel Problem Solving from Nature – PPSN XVIII. PPSN 2024. Lecture Notes in Computer Science, vol 15151. Springer, Cham. https://doi.org/10.1007/978-3-031-70085-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70085-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70084-2

  • Online ISBN: 978-3-031-70085-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics