Skip to main content

Large Language Models for Few-Shot Automatic Term Extraction

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2024)

Abstract

Automatic term extraction is the process of identifying domain-specific terms in a text using automated algorithms and is a key first step in ontology learning and knowledge graph creation. Large language models have shown good few-shot capabilities, thus, in this paper, we present a study to evaluate the few-shot in-context learning performance of GPT-3.5-Turbo on automatic term extraction. To benchmark the performance we compare the results with fine-tuning of a BERT-sized model. We also carry out experiments with count-based term extractors to assess their applicability to few-shot scenarios. We quantify prompt sensitivity with experiments to analyze the variation in performance of large language models across different prompt templates. Our results show that in-context learning with GPT-3.5-Turbo outperforms the BERT-based model and unsupervised count-based methods in few-shot scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://platform.openai.com/docs/models.

  2. 2.

    Here we refer to models with more than 1B parameters as large language models.

  3. 3.

    Specifically we used paraphrase-MiniLM-L6-v2.

  4. 4.

    https://optuna.readthedocs.io/en/stable/reference/samplers/generated/optuna.samplers.TPESampler.html.

  5. 5.

    https://huggingface.co/.

  6. 6.

    https://github.com/kevinlu1248/pyate.

  7. 7.

    https://github.com/openai/openai-python.

  8. 8.

    https://optuna.org/.

  9. 9.

    https://numpy.org/.

References

  • Astrakhantsev, N.A., Fedorenko, D.G., Turdakov, D.Y.: Methods for automatic term recognition in domain-specific text collections: a survey. Ph.D. thesis (2015). https://doi.org/10.1134/S036176881506002X

  • Brown, T.B., et al.: Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, 6–12 December 2020, Virtual. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.-F., Lin, H.-T. (eds.) (2020)

    Google Scholar 

  • Cabré, M.T.: Terminology: Theory, Methods, and Applications, vol. 1. John Benjamins Publishing (1999)

    Google Scholar 

  • Carreras, X., Màrquez, L., Padró, L.: Proceedings of the Seventh Conference on Natural Language Learning, CoNLL 2003, Held in cooperation with HLT-NAACL 2003, Edmonton, Canada, 31 May–1 June 2003. In: Daelemans, W., Osborne, M. (eds.), pp. 152–155. ACL (2003)

    Google Scholar 

  • Clouet, E.L., Gojun, A., Blancafort, H., Guegan, M., Gornostay, T., Heid, U.: Reference lists for the evaluation of term extraction tools (2012)

    Google Scholar 

  • Fowler, M.: Domain-Specific Languages. Pearson Education (2010)

    Google Scholar 

  • Frantzi, K.T., Ananiadou, S.: 16th International Conference on Computational Linguistics, Proceedings of the Conference, COLING 1996, Center for Sprogteknologi, Copenhagen, Denmark, 5–9 August 1996, pp. 41–46 (1996)

    Google Scholar 

  • Gutierrez, B.J., et al.: Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, 7–11 December 2022. In: Goldberg, Y., Kozareva, Z., Zhang, Y. (eds.), pp. 4497–4512. Association for Computational Linguistics (2022). https://doi.org/10.18653/V1/2022.FINDINGS-EMNLP.329

  • Hazem, A., Bouhandi, M., Boudin, F., Daille, B.: Proceedings of the Thirteenth Language Resources and Evaluation Conference, LREC 2022, Marseille, France, 20–25 June 2022. In: Calzolari, N., et al. (eds.), pp. 648–662. European Language Resources Association (2022)

    Google Scholar 

  • Hoste, V., Vanopstal, K., Terryn, A.R., Lefever, E.: The trade-off between quantity and quality. Comparing a large crawled corpus and a small focused corpus for medical terminology extraction. Across Lang. Cult. 20(2), 197–211 (2019)

    Article  Google Scholar 

  • Lang, C., Wachowiak, L., Heinisch, B., Gromann, D.: Findings of the Association for Computational Linguistics: ACL/IJCNLP 2021, Online Event, 1–6 August 2021. In: Zong, C., Xia, F., Li, W., Navigli, R. (eds.), pp. 3607–3620. Association for Computational Linguistics (2021). https://doi.org/10.18653/V1/2021.FINDINGS-ACL.316

  • Li, X., Qiu, X.: Finding supporting examples for in-context learning. CoRR abs/2302.13539 (2023). https://doi.org/10.48550/ARXIV.2302.13539

  • Liu, J., Shen, D., Zhang, Y., Dolan, B., Carin, L., Chen, W.: Proceedings of Deep Learning Inside Out: The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Architectures, DeeLIO@ACL 2022, Dublin, Ireland and Online, 27 May 2022. In: Agirre, E., Apidianaki, M., Vulic, I. (eds.), pp. 100–114. Association for Computational Linguistics (2022). https://doi.org/10.18653/V1/2022.DEELIO-1.10

  • Naveed, H., et al.: A comprehensive overview of large language models. CoRR abs/2307.06435 (2023). https://doi.org/10.48550/ARXIV.2307.06435

  • Perez, E., Kiela, D., Cho, K.: Advances in Neural Information Processing Systems 34: Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, 6–14 December 2021, Virtual. In: Ranzato, M., Beygelzimer, A., Dauphin, Y.N., Liang, P., Vaughan, J.W. (eds.), pp. 11054–11070 (2021)

    Google Scholar 

  • Rigouts Terryn, A., Hoste, V., Drouin, P., Lefever, E.: Proceedings of the 6th International Workshop on Computational Terminology. In: Daille, B., Kageura, K., Rigouts Terryn, A. (eds.), pp. 85–94. European Language Resources Association (2020). ISBN: 979-10-95546-57-3

    Google Scholar 

  • Rigouts Terryn, A., Hoste, V., Lefever, E.: HAMLET: hybrid adaptable machine learning approach to extract terminology. Terminology 27(2), 254–293 (2021)

    Google Scholar 

  • Rubin, O., Herzig, J., Berant, J.: Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2022, Seattle, WA, United States, 10–15 July 2022. In: Carpuat, M., de Marneffe, M.-C., Ruíz, I.V.M. (eds.), pp. 2655–2671. Association for Computational Linguistics (2022). https://doi.org/10.18653/V1/2022.NAACL-MAIN.191

  • Sclar, M., Choi, Y., Tsvetkov, Y., Suhr, A.: Quantifying language models’ sensitivity to spurious features in prompt design or: how i learned to start worrying about prompt formatting. CoRR abs/2310.11324 (2023). https://doi.org/10.48550/ARXIV.2310.11324

  • Tang, L., et al.: Evaluating large language models on medical evidence summarization. NPJ Digit. Med. 6 (2023). https://doi.org/10.1038/S41746-023-00896-7

  • Wadhwa, S., Amir, S., Wallace, B.C.: Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, 9-14 July 2023. In: Rogers, A., Boyd-Graber, J.L., Okazaki, N. (eds.), pp. 15566–15589. Association for Computational Linguistics (2023). https://doi.org/10.18653/V1/2023.ACL-LONG.868

  • Wang, S., et al.: GPT-NER: named entity recognition via large language models. CoRR abs/2304.10428 (2023).https://doi.org/10.48550/ARXIV.2304.10428

  • Zhang, M., Wang, B., Fei, H., Zhang, M.: In-context learning for few-shot nested named entity recognition. CoRR abs/2402.01182 (2024). https://doi.org/10.48550/ARXIV.2402.01182

Download references

Acknowledgement

Author Shubhanker Banerjee was supported by Science Foundation Ireland under Grant Agreement No. 13/RC/2106_P2 at the ADAPT SFI Research Centre at University Of Galway.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shubhanker Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Banerjee, S., Chakravarthi, B.R., McCrae, J.P. (2024). Large Language Models for Few-Shot Automatic Term Extraction. In: Rapp, A., Di Caro, L., Meziane, F., Sugumaran, V. (eds) Natural Language Processing and Information Systems. NLDB 2024. Lecture Notes in Computer Science, vol 14762. Springer, Cham. https://doi.org/10.1007/978-3-031-70239-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70239-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70238-9

  • Online ISBN: 978-3-031-70239-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics