Skip to main content

DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14762))

  • 379 Accesses

Abstract

Semantic role labeling (SRL) enriches many downstream applications, e.g., machine translation, question answering, summarization, and stance/belief detection. However, building multilingual SRL models is challenging due to the scarcity of semantically annotated corpora for multiple languages. Moreover, state-of-the-art SRL projection (XSRL) based on large language models (LLMs) yields output that is riddled with spurious role labels. Remediation of such hallucinations is not straightforward due to the lack of explainability of LLMs. We show that hallucinated role labels are related to naturally occurring divergence types that interfere with initial alignments. We implement Divergence-Aware Hallucination-Remediated SRL projection (DAHRS), leveraging linguistically-informed alignment remediation followed by greedy First-Come First-Assign (FCFA) SRL projection. DAHRS improves the accuracy of SRL projection without additional transformer-based machinery, beating XSRL in both human and automatic comparisons, and advancing beyond headwords to accommodate phrase-level SRL projection (e.g., EN-FR, EN-ES). Using CoNLL-2009 as our ground truth, we achieve a higher word-level F1 over XSRL: 87.6% vs. 77.3% (EN-FR) and 89.0% vs. 82.7% (EN-ES). Human phrase-level assessments yield 89.1% (EN-FR) and 91.0% (EN-ES). We also define a divergence metric to adapt our approach to other language pairs (e.g., English-Tagalog).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Figure 1 inputs: (a) EN: The dow ’s dive was the 12th - worst ever and the sharpest since the market fell 156.83 FR: La chute du dow jones a été la 12e - la pire et la plus forte depuis que le marché a chuté de 156.83. (b) EN: Some “circuit breakers” installed after the october 1987 crash failed their first test. FR: Certains “disjoncteurs” installés après l’écrasement d’octobre 1987 ont échoué leur premier test.

  2. 2.

    SRL-BERT achieves an F1 Score of 86.49 on the English Ontonotes dataset [37], and it can be used non-exclusively. https://allenai.org/terms.

  3. 3.

    A phrase consists of a token that begins with a “B” tag and continues with tokens that have an “I” tag. The following token will have a new “B”, an “O”, or end of the sentence, indicating the end of the phrase.

  4. 4.

    We have simplified the notion of predicate considerably in this discussion, focusing on verbs; however, other parts of speech may serve as predicates. For example, destruction of the city is a nominal phrase conveying a destroy event with a single argument: the city. Future work aims to explore other parts of speech as predicates.

  5. 5.

    We use EN-ES-TL parallel data from LORELEI [35].

References

  1. Akbik, A., Chiticariu, L., Danilevsky, M., Li, Y., Vaithyanathan, S., Zhu, H.: Generating high quality proposition banks for multilingual semantic role labeling. In: Proceedings of ACL-IJCNLP (2015)

    Google Scholar 

  2. Baklanova, E., Bellamy, K.: Spanish suffixes in tagalog: the case of common nouns. In: Traces of Contact in the Lexicon. BRILL (2023)

    Google Scholar 

  3. Campagnano, C., Conia, S., Navigli, R.: SRL4E - semantic role labeling for emotions: a unified evaluation framework. In: Proceedings of ACL (2022)

    Google Scholar 

  4. Danilevsky, M., Qian, K., Aharonov, R., Katsis, Y., Kawas, B., Sen, P.: A survey of the state of explainable AI for natural language processing. In: Proceedings of AACL-IJCNLP (2020)

    Google Scholar 

  5. Daza, A., Frank, A.: Translate and label! an encoder-decoder approach for cross-lingual semantic role labeling. In: Proceedings of EMNLP-IJCNLP (2019)

    Google Scholar 

  6. Daza, A., Frank, A.: X-srl: a parallel cross-lingual semantic role labeling dataset. In: Proceedings of EMNLP (2020)

    Google Scholar 

  7. DeepL SE: DeepL: neural machine translation software (2017)

    Google Scholar 

  8. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: Proceedings of NAACL-HLT (2018)

    Google Scholar 

  9. Dorr, B.J.: Machine translation divergences: a formal description and proposed solution. Computational Linguistics (1994)

    Google Scholar 

  10. Dorr, B.J., Pearl, L., Hwa, R., Habash, N.: DUSTer: a method for unraveling cross-language divergences for statistical word-level alignment. In: Proceedings of the 5th Conference of the Association for Machine Translation in the Americas: Technical Papers, vol. 2499 (2002)

    Google Scholar 

  11. Dou, Z.Y., Neubig, G.: Word alignment by fine-tuning embeddings on parallel corpora. In: Proceedings of the EACL (2021)

    Google Scholar 

  12. Fei, H., Zhang, M., Ji, D.: Cross-lingual semantic role labeling with high-quality translated training corpus. In: Proceedings of ACL (2020)

    Google Scholar 

  13. Gehring, J., Auli, M., Grangier, D., Yarats, D., Dauphin, Y.N.: Convolutional sequence to sequence learning. In: Proceedings of ICML. vol. 3 (2017)

    Google Scholar 

  14. Genest, P.E., Lapalme, G.: Framework for abstractive summarization using text-to-text generation. In: Monolingual@ACL (2011)

    Google Scholar 

  15. Guarasci, R., Silvestri, S., Pietro, G.D., Fujita, H., Esposito, M.: Bert syntactic transfer: a computational experiment on Italian, French and English languages. Comput. Speech Lang. 71 (2022)

    Google Scholar 

  16. Hajič, J., et al.: 2009 conll shared task part 2 (2012)

    Google Scholar 

  17. Hassan, H., et al.: Achieving human parity on automatic Chinese to English news translation. arXiv preprint arXiv:1803.05567 (2018)

  18. Hoffman, R.R., Mueller, S.T., Klein, G., Litman, J.: Metrics for explainable AI: challenges and prospects (2018)

    Google Scholar 

  19. Hwa, R., Resnik, P., Weinberg, A., Cabezas, C., Kolak, O.: Bootstrapping parsers via syntactic projection across parallel texts. Natural Lang. Eng. 11, 311–325 (2005)

    Article  Google Scholar 

  20. Kozhevnikov, M., Titov, I.: Cross-lingual transfer of semantic role labeling models. In: Proceedings of ACL (2013)

    Google Scholar 

  21. Liu, D., Gildea, D.: Semantic role features for machine translation (2010)

    Google Scholar 

  22. Liu, H., Yin, Q., Wang, W.Y.: Towards explainable NLP: a generative explanation framework for text classification. In: Proceedings of ACL (2020)

    Google Scholar 

  23. Maniyar, S.N., Kulkarni, S.B., Bhise, P.R.: Linguistic divergence in various language pair in machine translation perceptive. IOSR J. Comput. Eng. (IOSR-JCE) 23(1) (2021)

    Google Scholar 

  24. Marzouk, S.: Chapter 3 german light verb construction in the course of the development of machine translation. In: Translation, Interpreting, Cognition: The Way Out of the Box. Language Science Press (2021)

    Google Scholar 

  25. Mather, B., Dorr, B.J., Dalton, A., de Beaumont, W., Rambow, O., Schmer-Galunder, S.M.: From stance to concern: adaptation of propositional analysis to new tasks and domains. In: Findings of the ACL (2022)

    Google Scholar 

  26. Mather, B., Dorr, B.J., Rambow, O., Strzalkowski, T.: A general framework for domain-specialization of stance detection. In: Proceedings of FLAIRS (2021)

    Google Scholar 

  27. McDonald, R., et al.: Universal dependency annotation for multilingual parsing. In: Proceedings of ACL (2013)

    Google Scholar 

  28. Mehta, S.V., Lee, J.Y., Carbonell, J.: Towards semi-supervised learning for deep semantic role labeling. In: Proceedings of EMNLP (2018)

    Google Scholar 

  29. Mulcaire, P., Swayamdipta, S., Smith, N.A.: Polyglot semantic role labeling. In: Proceedings of ACL (2018)

    Google Scholar 

  30. OpenAI: ChatGPT: Large-scale language model (2021)

    Google Scholar 

  31. Pražák, O., Konopík, M.: Cross-lingual srl based upon universal dependencies. In: Proceedings of RANLP (2017)

    Google Scholar 

  32. Rottmann, K., Vogel, S.: Word reordering in statistical machine translation with a pos-based distortion model. In: Proceedings of IEEE on TMI (2007)

    Google Scholar 

  33. Shen, Y., Chu, C., Cromieres, F., Kurohashi, S.: Cross-language projection of dependency trees with constrained partial parsing for tree-to-tree machine translation. In: Proceedings of the First Conference on Machine Translation (2016)

    Google Scholar 

  34. Shi, P., Lin, J.: Simple bert models for relation extraction and semantic role labeling. arXiv preprint arXiv:1904.05255 (2019)

  35. Tracey, J., et al.: Lorelei (low resource languages for emergent incidents) tagalog representative language pack (2023)

    Google Scholar 

  36. Tsai, H.C., Kuo, C.W., Huang, Y.F.: Llamaloop: enhancing information retrieval in llama with semantic relevance feedback loop. Preprint at Reserch Square (2023)

    Google Scholar 

  37. Weischedel, R., et al.: Ontonotes release 5.0 (2013)

    Google Scholar 

  38. Yarowsky, D., Ngai, G.: Inducing multilingual pos taggers and np bracketers via robust projection across aligned corpora. In: Second Meeting of the NAACL (2001)

    Google Scholar 

  39. Zhang, M., Jiang, H., Aw, A., Li, H., Tan, C.L., Li, S.: A tree sequence alignment-based tree-to-tree translation model. In: Proceedings of the ACL-HLT (2008)

    Google Scholar 

  40. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: evaluating text generation with bert. arXiv preprint arXiv:1904.09675 (2019)

Download references

Acknowledgements

This research is based upon work supported by Defense Advanced Research Projects Agency (DARPA) under Contract No. HR001121C0186. Any opinions, findings and conclusions or recommendations expressed in this research are those of the authors and do not necessarily reflect the views of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangpil Youm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Youm, S., Mather, B., Jayaweera, C., Prada, J., Dorr, B. (2024). DAHRS: Divergence-Aware Hallucination-Remediated SRL Projection. In: Rapp, A., Di Caro, L., Meziane, F., Sugumaran, V. (eds) Natural Language Processing and Information Systems. NLDB 2024. Lecture Notes in Computer Science, vol 14762. Springer, Cham. https://doi.org/10.1007/978-3-031-70239-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70239-6_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70238-9

  • Online ISBN: 978-3-031-70239-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics