Skip to main content

ECR: An Expertise-Enriched Conclude-Then-Refine Summarization Framework for Professional Articles

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14763))

  • 469 Accesses

Abstract

Summary generation using large language models (LLMs) is characterized by its flexibility, high quality, and efficiency. However, professional articles usually contain domain-specific background knowledge and many professional terminologies. It’s hard for the generated summary to maintain professionalism and good writing style using simple prompts coupled with LLMs, which is the common summarization method. While developing task-specific LLMs can improve the summary quality, it demands a high training cost. To enhance the summary quality cost-efficiently, we present ECR, a two-stage expertise-enriched conclude-then-refine summarization framework for professional articles. Firstly, the Key Information Conclusion Stage (KICS) distills the article content through elaborated prompt engineering. Subsequently, the Refinement and Term Enrichment Stage (RTES) enhances coherence, conciseness, and professionalism. Experimental results indicate that our approach offers superior summaries to the summaries generated by the common method across diverse domains. ECR shows an over 80% win rate in structural consistency evaluated by the LLM, alongside a 2x increase in terminology integration. The framework also provides sufficient flexibility to replace components within it. Furthermore, a test dataset comprising 100 articles and an evaluation method for assessing professionalism are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Detail description of the data can be found on https://github.com/shauryr/ACL-anthology-corpus.

  2. 2.

    https://github.com/pdfminer/pdfminer.six.

  3. 3.

    The three models’ weights can be downloaded from https://huggingface.co.

References

  1. Bhaskar, A., Fabbri, A.R., Durrett, G.: Prompted opinion summarization with gpt-3.5. In: Annual Meeting of the Association for Computational Linguistics (2022)

    Google Scholar 

  2. Blog, A.: Anthropic claude 2 (2023). https://www.anthropic.com/index/claude-2, Accessed on 12 September 2023

  3. Durmus, E., He, H., Diab, M.T.: Feqa: a question answering evaluation framework for faithfulness assessment in abstractive summarization. ArXiv arXiv: abs/2005.03754 (2020)

  4. Floridi, L., Chiriatti, M.: Gpt-3: its nature, scope, limits, and consequences. Mind. Mach. 30, 681–694 (2020)

    Article  MATH  Google Scholar 

  5. Goyal, T., Durrett, G.: Annotating and modeling fine-grained factuality in summarization. In: North American Chapter of the Association for Computational Linguistics (2021)

    Google Scholar 

  6. Goyal, T., Li, J.J., Durrett, G.: News summarization and evaluation in the era of gpt-3. ArXiv abs/ arXiv: 2209.12356 (2022)

  7. Huang, Y., Sun, L., Han, C., Guo, J.: A high-precision two-stage legal judgment summarization. Mathematics 11(6) (2023). https://doi.org/10.3390/math11061320, https://www.mdpi.com/2227-7390/11/6/1320

  8. Jain, D., Borah, M.D., Biswas, A.: Summarization of lengthy legal documents via abstractive dataset building: An extract-then-assign approach. Expert Syst. Appl. 237, 121571 (2024). https://doi.org/10.1016/j.eswa.2023.121571. https://www.sciencedirect.com/science/article/pii/S0957417423020730

  9. Jain, S., et al.: Multi-dimensional evaluation of text summarization with in-context learning. ArXiv arXiv: abs/2306.01200 (2023)

  10. Lin, C.Y.: Rouge: A package for automatic evaluation of summaries. In: Annual Meeting of the Association for Computational Linguistics (2004)

    Google Scholar 

  11. Liu, Y., Fabbri, A.R., Liu, P., Radev, D.R., Cohan, A.: On learning to summarize with large language models as references. ArXiv arXiv: abs/2305.14239 (2023)

  12. Lu, G., Larcher, S.B., Tran, T.A.: Hybrid long document summarization using c2f-far and chatgpt: A practical study. ArXiv arXiv: 2306.01169 (2023)

  13. Pu, X., Gao, M., Wan, X.: Summarization is (almost) dead. ArXiv arXiv: 2309.09558 (2023)

  14. Rohatgi, S.: Acl anthology corpus with full text. Github (2022). https://github.com/shauryr/ACL-anthology-corpus

  15. Veen, D.V., et al.: Adapted large language models can outperform medical experts in clinical text summarization. Nat. Med. (2023)

    Google Scholar 

  16. Wang, J., Liang, Y., Meng, F., Zou, B., Li, Z., Qu, J., Zhou, J.: Zero-shot cross-lingual summarization via large language models. In: Proceedings of the 4th New Frontiers in Summarization Workshop (2023)

    Google Scholar 

  17. Wang, Y., Zhang, Z., Wang, R.: Element-aware summarization with large language models: Expert-aligned evaluation and chain-of-thought method. In: Annual Meeting of the Association for Computational Linguistics (2023)

    Google Scholar 

  18. Wu, N., Gong, M., Shou, L., Liang, S., Jiang, D.: Large language models are diverse role-players for summarization evaluation. In: Natural Language Processing and Chinese Computing (2023)

    Google Scholar 

  19. Yang, X., Li, Y., Zhang, X., Chen, H., Cheng, W.: Exploring the limits of chatgpt for query or aspect-based text summarization. ArXiv arxiv: abs/2302.08081 (2023)

  20. van Zandvoort, D., Wiersema, L., Huibers, T., van Dulmen, S., Brinkkemper, S.: Enhancing summarization performance through transformer-based prompt engineering in automated medical reporting. arxiv: 2311.13274 (2023)

  21. Zeng, Q., Sidhu, M., Chan, H.P., Wang, L., Ji, H.: Scientific opinion summarization: Meta-review generation with checklist-guided iterative introspection (2023)

    Google Scholar 

  22. Zhang, H., Liu, X., Zhang, J.: Extractive summarization via chatgpt for faithful summary generation. In: Conference on Empirical Methods in Natural Language Processing (2023)

    Google Scholar 

  23. Zhang, H., Liu, X., Zhang, J.: Summit: Iterative text summarization via chatgpt. ArXiv arXiv: abs/2305.14835 (2023)

  24. Zhang, T., Kishore, V., Wu, F., Weinberger, K.Q., Artzi, Y.: Bertscore: Evaluating text generation with bert. ArXiv arXiv: 1904.09675 (2019)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfeng Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liang, Z., Xie, K., Lu, S., Shi, Y., Yeerpan, T., Wang, Z. (2024). ECR: An Expertise-Enriched Conclude-Then-Refine Summarization Framework for Professional Articles. In: Rapp, A., Di Caro, L., Meziane, F., Sugumaran, V. (eds) Natural Language Processing and Information Systems. NLDB 2024. Lecture Notes in Computer Science, vol 14763. Springer, Cham. https://doi.org/10.1007/978-3-031-70242-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70242-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70241-9

  • Online ISBN: 978-3-031-70242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics