Skip to main content

Enhancing Small Language Models via ChatGPT and Dataset Augmentation

  • Conference paper
  • First Online:
Natural Language Processing and Information Systems (NLDB 2024)

Abstract

This paper explores the enhancement of small language models through strategic dataset augmentation via ChatGPT-3.5-Turbo, in the domain of Natural Language Inference (NLI). By employing knowledge distillation-based techniques and synthetic dataset augmentation, we aim to bridge the performance gap between large language models (LLMs) and small language models (SLMs) without the immense cost of human annotation. Our methods involve two forms of rationale generation–information extraction and informed reasoning–to enrich the ANLI dataset. We then fine-tune T5-Small on these augmented datasets, evaluating its performance against an established benchmark. Our findings reveal that the incorporation of synthetic rationales significantly improves the model’s ability to comprehend natural language, leading to 1.3% and 2.3% higher classification accuracy, respectively, on the ANLI dataset, demonstrating the potential of leveraging LLMs for dataset augmentation. This approach not only enhances the performance of smaller models on complex tasks but also introduces a cost-effective method for fine-tuning smaller language models. By advancing our understanding of knowledge distillation and fine-tuning strategies, this work contributes to the ongoing effort to create more capable and efficient NLP systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ballout, M., Krumnack, U., Heidemann, G., Kuehnberger, K.U.: Show me how it’s done: the role of explanations in fine-tuning language models (2024)

    Google Scholar 

  2. Brown, T.B., et al.: Language models are few-shot learners, May 2020. http://arxiv.org/abs/2005.14165

  3. Bucil, C., Caruana, R., Niculescu-Mizil, A.: Model compression. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2006, pp. 535–541. Association for Computing Machinery, New York (2006). https://doi.org/10.1145/1150402.1150464

  4. Camburu, O.M., Rocktäschel, T., Lukasiewicz, T., Blunsom, P.: e-SNLI: natural language inference with natural language explanations (2018)

    Google Scholar 

  5. Chakrabarty, T., Saakyan, A., Ghosh, D., Muresan, S.: FLUTE: figurative language understanding through textual explanations (2022)

    Google Scholar 

  6. DeYoung, J., et al.: ERASER: a benchmark to evaluate rationalized NLP models (2020)

    Google Scholar 

  7. Github Repository. https://github.com/tomlpieper/ba. Accessed 24 May 2024

  8. Hase, P., Bansal, M.: When can models learn from explanations? A formal framework for understanding the roles of explanation data. In: Andreas, J., Narasimhan, K., Nematzadeh, A. (eds.) Proceedings of the First Workshop on Learning with Natural Language Supervision, Dublin, Ireland, pp. 29–39. Association for Computational Linguistics, May 2022. https://doi.org/10.18653/v1/2022.lnls-1.4. https://aclanthology.org/2022.lnls-1.4

  9. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015)

    Google Scholar 

  10. Ho, N., Schmid, L., Yun, S.Y.: Large language models are reasoning teachers (2023)

    Google Scholar 

  11. Hsieh, C.Y., et al.: Distilling step-by-step! Outperforming larger language models with less training data and smaller model sizes (2023)

    Google Scholar 

  12. Li, S., et al.: Explanations from large language models make small reasoners better (2022)

    Google Scholar 

  13. Liu, A., Swayamdipta, S., Smith, N.A., Choi, Y.: WANLI: worker and AI collaboration for natural language inference dataset creation. In: Goldberg, Y., Kozareva, Z., Zhang, Y. (eds.) Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, pp. 6826–6847. Association for Computational Linguistics, December 2022. https://doi.org/10.18653/v1/2022.findings-emnlp.508. https://aclanthology.org/2022.findings-emnlp.508

  14. MacCartney, B., Manning, C.D.: Modeling semantic containment and exclusion in natural language inference. In: Scott, D., Uszkoreit, H. (eds.) Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), Manchester, UK, pp. 521–528. Coling 2008 Organizing Committee, August 2008. https://aclanthology.org/C08-1066

  15. Meng, Y., Huang, J., Zhang, Y., Han, J.: Generating training data with language models: towards zero-shot language understanding (2022)

    Google Scholar 

  16. Narang, S., Raffel, C., Lee, K., Roberts, A., Fiedel, N., Malkan, K.: Wt5?! Training text-to-text models to explain their predictions (2020)

    Google Scholar 

  17. Nie, Y., Williams, A., Dinan, E., Bansal, M., Weston, J., Kiela, D.: Adversarial NLI: a new benchmark for natural language understanding (2020)

    Google Scholar 

  18. Papineni, K., Roukos, S., Ward, T., Zhu, W.J.: BLEU: a method for automatic evaluation of machine translation. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 311–318, ACL 2002. Association for Computational Linguistics, USA (2002). https://doi.org/10.3115/1073083.1073135. https://doi.org/10.3115/1073083.1073135

  19. Raffel, C., et al.: Exploring the limits of transfer learning with a unified text-to-text transformer (2023)

    Google Scholar 

  20. Rajani, N.F., McCann, B., Xiong, C., Socher, R.: Explain yourself! Leveraging language models for commonsense reasoning (2019)

    Google Scholar 

  21. Barattieri di San Pietro, C., Frau, F., Mangiaterra, V., Bambini, V.: The pragmatic profile of chatGPT: assessing the communicative skills of a conversational agent. Sistemi Intelligenti XXXV, 379–400 (2023). https://doi.org/10.1422/108136

  22. Talmor, A., Herzig, J., Lourie, N., Berant, J.: CommonsenseQA: a question answering challenge targeting commonsense knowledge (2019)

    Google Scholar 

  23. Lanham, M.: Attention is all we need! In: Generating a New Reality, pp. 195–222. Apress, Berkeley (2021). https://doi.org/10.1007/978-1-4842-7092-9_7

    Chapter  MATH  Google Scholar 

  24. Wang, L., Yoon, K.J.: Knowledge distillation and student-teacher learning for visual intelligence: a review and new outlooks. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3048–3068 (2022). https://doi.org/10.1109/TPAMI.2021.3055564

    Article  MATH  Google Scholar 

  25. Wang, R., Zhou, W., Sachan, M.: Let’s synthesize step by step: Iterative dataset synthesis with large language models by extrapolating errors from small models (2023)

    Google Scholar 

  26. Wei, J., et al.: Finetuned language models are zero-shot learners (2022)

    Google Scholar 

  27. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models (2023)

    Google Scholar 

  28. Wolf, T., et al.: HuggingFace’s transformers: state-of-the-art natural language processing (2020)

    Google Scholar 

  29. Ye, J., et al.: ZEROGEN: efficient zero-shot learning via dataset generation (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tom Pieper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pieper, T., Ballout, M., Krumnack, U., Heidemann, G., Kühnberger, KU. (2024). Enhancing Small Language Models via ChatGPT and Dataset Augmentation. In: Rapp, A., Di Caro, L., Meziane, F., Sugumaran, V. (eds) Natural Language Processing and Information Systems. NLDB 2024. Lecture Notes in Computer Science, vol 14763. Springer, Cham. https://doi.org/10.1007/978-3-031-70242-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-70242-6_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-70241-9

  • Online ISBN: 978-3-031-70242-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics